版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知圆:与圆:,则两圆的公切线条数为A.1条 B.2条C.3条 D.4条2.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位3.已知函数,则()A.当且仅当时,有最小值为B.当且仅当时,有最小值为C.当且仅当时,有最大值为D.当且仅当时,有最大值为4.函数=的部分图像如图所示,则的单调递减区间为A. B.C. D.5.已知集合,,则()A. B.C. D.6.已知为两条直线,为两个不同的平面,则下列说法正确的是A.若,则 B.若,则C.若,则 D.若,则7.命题“”的否定是()A. B.C. D.8.函数的最小正周期是()A. B.C. D.39.若,,则sin=A. B.C. D.10.弧长为3,圆心角为的扇形面积为A. B.C.2 D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,则____12.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A. B.C. D.-113.若坐标原点在圆的外部,则实数m的取值范围是___14.若函数,则_________;不等式的解集为__________15.如图所示,中,,边AC上的高,则其水平放置的直观图的面积为______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,集合(1)若“”是“”的充分条件,求实数的取值范围;(2)若,求实数的取值范围.17.已知函数(,)为奇函数,且相邻两对称轴间的距离为(1)当时,求的单调递减区间;(2)将函数的图象沿轴方向向右平移个单位长度,再把横坐标缩短到原来的(纵坐标不变),得到函数的图象.当时,求函数的值域18.已知函数的部分图象如图所示(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,求的值域19.一几何体按比例绘制的三视图如图所示(单位:).(1)试画出它的直观图(不写作图过程);(2)求它的表面积和体积.20.已知集合,(1)当m=5时,求A∩B,;(2)若,求实数m取值范围21.已知(1)若函数和函数的图象关于原点对称,求函数的解析式(2)若在上是增函数,求实数的取值范围
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题2、B【解析】将目标函数变为,由此求得如何将变为目标函数.【详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【点睛】本小题主要考查三角函数图像变换中的平移变换,属于基础题.3、A【解析】由基本不等式可得答案.【详解】因为,所以,当且仅当即时等号成立.故选:A.4、D【解析】由五点作图知,,解得,,所以,令,解得<<,,故单调减区间为(,),,故选D.考点:三角函数图像与性质5、D【解析】先求出集合B,再求出两集合的交集即可【详解】由,得,所以,因为,所以,故选:D6、D【解析】A中,有可能,故A错误;B中,显然可能与斜交,故B错误;C中,有可能,故C错误;D中,由得,,又所以,故D正确.7、D【解析】直接利用全称命题的否定为特称命题进行求解.【详解】命题“”为全称命题,按照改量词否结论的法则,所以否定为:,故选:D8、A【解析】根据解析式,由正切函数的性质求最小正周期即可.【详解】由解析式及正切函数的性质,最小正周期.故选:A.9、B【解析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围10、B【解析】弧长为3,圆心角为,故答案为B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、16、【解析】令,则,所以,故填.12、D【解析】设平均增长率为x,由题得故填.13、【解析】方程表示圆,得,根据点在圆外,得不等式,解不等式可得结果.【详解】圆的标准方程为,则,若坐标原点在圆的外部,则,解得,则实数m的取值范围是,故答案为:【点睛】本题考查圆的一般方程,考查点与圆的位置关系的应用,属于简单题.14、①.②.【解析】代入求值即可求出,分与两种情况解不等式,最后求并集即可.【详解】,当时,,所以,解得:;当时,,解得:,所以,综上:.故答案为:,15、.【解析】直接根据直观图与原图像面积的关系求解即可.【详解】的面积为,由平面图形的面积与直观图的面积间的关系.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)由已知可得,可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分、两种情况讨论,根据可得出关于实数的不等式(组),综合可得出实数的取值范围.【小问1详解】解:由已知得,故有,解得,故的取值范围为.【小问2详解】解:当时,则,解得;当时,则或,解得.∴的取值范围为.17、(1),](2)值域为[,]【解析】(1)利用三角恒等变换化简的解析式,根据条件,可求出周期和,结合奇函数性质,求出,再用整体代入法求出内的递减区间;(2)利用函数的图象变换规律,求出的解析式,再利用正弦函数定义域,即可求出时的值域.【详解】解:(1)由题意得,因相邻两对称轴之间距离为,所以,又因为函数为奇函数,所以,∴,因为,所以故函数令.得.令得,因为,所以函数的单调递减区间为,](2)由题意可得,因为,所以所以,.即函数的值域为[,]【点睛】本题主要考查正弦函数在给定区间内的单调性和值域,包括周期性,奇偶性,单调性和最值,还涉及三角函数图像的平移伸缩和三角恒等变换中的辅助角公式.18、(1),()(2)【解析】(1)先根据图象得到函数的最大值和最小值,由此列方程组求得的值,根据周期求得的值,根据求得的值,由此求得的解析式,进而求出的对称中心;(2)根据三角变换法则求得函数的解析式,再换元即可求出的值域【小问1详解】由图象可知:,解得:,又由于,可得:,所以由图像知,,又因为所以,.所以令(),得:()所以的对称中心的坐标为()【小问2详解】依题可得,因为,令,所以,即的值域为19、(1)直观图见解析;(2),.【解析】(1)由三视图直接画出它的直观图即可;(2)由三视图可知该几何体是长方体被截取一个角,分别计算其表面积和体积可得答案.【详解】解:(1)直观图如图所示.(2)由三视图可知该几何体是长方体被截取一个角,且该几何体的体积是以,,为棱的长方体的体积的.在直角梯形中,作,则是正方形,∴.在中,,,∴.∴.∴几何体的体积.∴该几何体的表面积为,体积为.【点睛】本题主要考查空间几何体的三视图与直观图、空间几何体的表面积与体积,考查学生的直观想象能力,数学计算能力,属于中档题.20、(1),(2)【解析】(1)根据集合的交集、并集运算即得解;(2)转化为,分,两种情况讨论,列出不等式控制范围,求解即可【小问1详解】(1)当时,可得集合,,根据集合的运算,得,.【小问2详解】解:由,可得,①当时,可得,解得;②当时,则满足,解得,综上实数的取值范围是.21、(1)(2)【解析】(1)化简f(x)解析式,设函数的图象上任一点,,它关于原点的对称点为,其中,,利用点在函数的图象上,将其坐标代入的表达式即可得g(x)解析式;(2)可令,将在转化为:,对的系数分类讨论,利用一次函数与二次函数的性质讨论解决即可【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗机构文化建设方案
- 智能乡村工程承包合同
- 中心站员工福利计划
- 城市广场休闲区廊架施工合同
- 专利许可合同评审管理办法
- 化工行业高压电工聘用协议
- 冷藏租赁协议:冷冻食品生产专用
- 交流酒会酒店场地租赁协议
- 物流仓库操作工聘用协议
- 信息技术异常处理办法
- 广西检察院聘用制书记员考试真题库2023
- 品管圈QCC成果汇报提高母乳喂养成功率课件
- 沪科版八年级数学(上)期中考试基础知识总结
- 2024届高三英语一轮复习:读后续写练习写作讲义1素材
- 碳青霉烯肠杆菌预防与控制标准(WST826-2023)考核试题及答案
- 冬季劳动安全注意事项-02
- 《声音》(单元作业设计)科学教科版四年级上册
- 危险废物贮存场所建设方案及要求
- 型钢桥梁拆除施工方案范本
- 学校保安服务质量评价表
- 小学科学实验室仪器设备增补说明
评论
0/150
提交评论