版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.设集合,若,则实数()A.0 B.1C. D.22.若,,,则有A. B.C. D.3.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.4.已知函数:①;②;③;④;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②5.比较,,的大小()A. B.C. D.6.设的两根是,则A. B.C. D.7.对于每个实数x,设取两个函数中的较小值.若动直线y=m与函数的图象有三个不同的交点,它们的横坐标分别为,则的取值范围是()A. B.C. D.8.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.39.已知,,函数的零点为c,则()A.c<a<b B.a<c<bC.b<a<c D.a<b<c10.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.11.已知圆(,为常数)与.若圆心与圆心关于直线对称,则圆与的位置关系是()A.内含 B.相交C.内切 D.相离12.已知集合0,,1,,则A. B.1,C.0,1, D.二、填空题(本大题共4小题,共20分)13.化简=________14.若函数的图象过点,则函数的图象一定经过点________.15.已知函数在区间上恰有个最大值,则的取值范围是_____16.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数值域为.其中正确命题的编号为______三、解答题(本大题共6小题,共70分)17.已知集合,,.(1)求,;(2)若,求实数a的取值范围.18.在平面直角坐标系中,已知角的顶点都与坐标原点重合,始边都与x轴的非负半轴重合,角的终边与单位圆交于点,角的终边在第二象限,与单位圆交于点Q,扇形的面积为.(1)求的值;(2)求的值.19.设函数f(x)=k⋅2x-(1)求k的值;(2)若不等式f(x)>a⋅2x-1(3)设g(x)=4x+4-x-4f(x),求20.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.21.已知函数,若函数的图象过点,(1)求的值;(2)若,求实数的取值范围;(3)若函数有两个零点,求实数的取值范围.22.已知函数fx(1)求函数fx(2)判断函数fx(3)判断函数fx在区间0,1上的单调性,并用定义证明
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】可根据已知条件,先求解出的值,然后分别带入集合A和集合B中去验证是否满足条件,即可完成求解.【详解】集合,,所以,①当时,集合,此时,成立;②当时,集合,此时,不满足题意,排除.故选:B.2、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.3、C【解析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.4、D【解析】根据指数函数、幂函数的性质进行选择即可.【详解】①:函数是实数集上的增函数,且图象过点,因此从左到右第三个图象符合;②:函数是实数集上的减函数,且图象过点,因此从左到右第四个图象符合;③:函数在第一象限内是减函数,因此从左到右第二个图象符合;④:函数在第一象限内是增函数,因此从左到右第一个图象符合,故选:D5、D【解析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【详解】因为,,所以故选:D【点睛】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.6、D【解析】详解】解得或或即,所以故选D7、C【解析】如图,作出函数的图象,其中,设与动直线的交点的横坐标为,∵图像关于对称∴∵∴∴故选C点睛:本题首先考查新定义问题,首先从新定义理解函数,为此解方程,确定分界点,从而得函数的具体表达式,画出函数图象,通过图象确定三个数中具有对称关系,,因此只要确定的范围就能得到的范围.8、A【解析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.9、B【解析】由函数零点存在定理可得,又,,从而即可得答案.【详解】解:因为在上单调递减,且,,所以的零点所在区间为,即.又因为,,所以a<c<b故选:B.10、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B11、B【解析】由对称求出,再由圆心距与半径关系得圆与圆的位置关系【详解】,,半径为,关于直线的对称点为,即,所以,圆半径为,,又,所以两圆相交故选:B12、A【解析】直接利用交集的运算法则化简求解即可【详解】集合,,则,故选A【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.二、填空题(本大题共4小题,共20分)13、【解析】利用对数的运算法则即可得出【详解】解:原式lg0.12=2+2lg10﹣1=2﹣2故答案为【点睛】本题考查了对数的运算法则,属于基础题14、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.15、【解析】将代入函数解析式,求出的取值范围,根据正弦取8次最大值,求出的取值范围【详解】因为,,所以,又函数在区间上恰有个最大值,所以,得【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围16、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.三、解答题(本大题共6小题,共70分)17、(1),(2)【解析】(1)由交集和并集运算直接求解即可.(2)由,则【详解】(1)由集合,则,(2)若,则,所以18、(1)(2)【解析】(1)利用任意角的三角函数定义进行求解;(2)先利用扇形的面积公式求出其圆心角,进而得到,再利用两角和的余弦公式进行求解.小问1详解】解:由任意角的三角函数定义,得,,;【小问2详解】设,因为扇形的半径为1,面积为,所以,即,又因为角的终边在第二象限,所以不妨设,则.19、(1)1;(2)a<54;(3)最小值-2,此时x=【解析】(1)根据题意可得f0=0,即可求得(2)f(x)>a⋅2x-1(3)由题意g(x)=4x+4-x-42x-【详解】(1)因为f(x)=k⋅2x-所以f0=0,所以k-1=0,解得所以f(x)=2当k=1时,f(-x)=2所以fx为奇函数,故k=1(2)f(x)>a⋅2x-1所以只需a<-因为-12x所以a<5(3)因为g(x)=4x+可令t=2x-2-x,可得函数t则t2=4x+由ht为开口向上,对称轴为t=2>所以t=2时,ht取得最小值-2此时2=2x-所以gx在1,+∞上的最小值为-2,此时【点睛】解题的关键熟练掌握二次函数的图象与性质,并灵活应用,处理存在性问题时,若a<m(x),只需a<m(x)max,若a>m(x),只需a>m(x)min,处理恒成立问题时,若a<m(x),只需a<m(x)20、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.21、(1).(2).(3).【解析】(1)由函数过点,代入函数即可得的值;(2)由可得的取值范围;(3)由函数的大致图象即可得的取值范围.试题解析:(1),,,.(2),,.(3)当时,是减函数,值域为.偶函数,时,是增函数,值域为,函数有两个零点时,.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识22、(1)-1,1(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024美容院加盟合作协议书(五年有效期)
- 2025年烟草产品采购合同模板3篇
- 二零二五年度地铁隧道钢筋供应及安装服务合同2篇
- 2025年度国家级科研项目合作劳务派遣管理协议3篇
- 二零二五年度文化产业园开发与运营合同文化产业3篇
- 2025年度云计算服务100%股权转让合同3篇
- 代运营服务商2025年度店铺经营状况评估合同2篇
- 2025年度零担运输合同供应链金融合作合同4篇
- 年度ZNO基变阻器材料产业分析报告
- 年度汽油发动机电控装置市场分析及竞争策略分析报告
- 山东省济南市2023-2024学年高二上学期期末考试化学试题 附答案
- 大唐电厂采购合同范例
- 国潮风中国风2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- IEC 62368-1标准解读-中文
- 15J403-1-楼梯栏杆栏板(一)
- 2024年中考语文名句名篇默写分类汇编(解析版全国)
- 新煤矿防治水细则解读
- 医院领导班子集体议事决策制度
- 解读2024年《学纪、知纪、明纪、守纪》全文课件
- 农机维修市场前景分析
评论
0/150
提交评论