版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ysisandtheUseofFRMPartITheIntroductionofTimeStatisticalProbabilityProbabilityPointEstimateandConfidenceHypothesisLinearDate2-BAII3-示调用FORMAT功能,出现DEC=2.00。若要改为四位小数,输入6,再按【ENTER】,出现DEC=6.00004-括号的使负号功1/X功ex功yx功nCr功
1/2:【2】【1/Xe2:【2】【2nd】【LN23:【2】【yx】【3】【=21/3:【2】【yx】【3】【1/X】【= 5-TheIntroductionofTimeStatisticalProbabilityPointEstimateandHypothesisLinearDate6-TimeTimeRequiredinterestrateonaNPVand7-TimeValueofRequiredrateofreturnaffectedbythesupplyanddemandoffundsinthethereturnthatinvestorsandsaversrequiretogetthemtolendtheirusuallyforparticularDiscountratetheinterestrateweusetodiscountpaymentstobemadeintheusuallyusedinterchangeablywiththeinterestOpportunitycostalsounderstoodasaformofinterestrate.Itisthevaluethatforgobychoosingaparticularcourseof8-TimeValueofposerequiredrateofNominalrisk-freerate=realrisk-freerate+expectedinflationRequiredinterestrateonasecurity=nominalrisk-freerate+riskpremium+liquidityriskpremium+maturityrisk9-TimeValueofEAR 𝑝−
1+ 1+ =那么如果是semim=2如果是quarterly=ThegreaterthecompoundingthegreatertheEARwillbeincomparisontothestatedthegreaterthedifferencebetweenEARandthestated10-TimeValueofFuturevalue(FV):Amounttowhichinvestmentgrowsafteroneormorecompoundingperiods.Presentvalue(PV):CurrentvalueofsomefuturecashAnnuities:isafinitesetoflevelsequentialcashequalequalamountofcashsameN=numberofI/Y=interestrateperPV=presentPMT=amountofeachperiodicFV=future11-投资100元 计算结果为:FV=259.3742 计算结果为:PV=-55.839512- =计算结果为:N143.80因为计算结果以“月”为单位,需换算成“年”:143.8÷1211.98,13-Acompanyplanstoborrow$50,000forfiveyears.Thecompany’sbankwilllendthemoneyatarateof9%andrequiresthattheloanbepaidoffinfiveequalend-of-yearpayments.CalculatetheamountofthepaymentthatthecompanymustmakeinordertofullyamortizethisloaninfiveN=5,I/Y=9,PV=50,000,FV=0;CPT:PMT=-Usingtheloandescribedintheprecedingexample,determinethepaymentamountifthebankrequiresthecompanytomakequarterlypayments.N=5×4=20,I/Y=9/4=2.25,PV=50,000,FV=0;CPT:PMT=-14-N=20*12=240,I/Y=6.2/12,PV=700,000,CPTPMT=-15-Ordinaryannuities(后付年金):Thefirstcashflowoccurs firstExample:mortgageloans,investments,Annuitydue(先付年金):Thefirstcashflowoccurs Example:rentalfees,tuitionfees,livingexpenses,Usecalculator,putthecalculatorintheBGNmodeand16- 的话,假设回报率为BGN模式:([2NDBGN2ND]SET2NDN=20,I/Y=4,PMT=100,000CPTPV=-17-BGN模式:([2NDBGN2ND]SET2NDN=4,I/Y=4,PMT=50,000,CPTPV=-18-TimeValueofAboutDefinition:Aperpetuityisasetoflevelnever-endingsequentialcashflows,withthefirstcashflowoccurringoneperiodfromnow.AAAAAAA0AAAAAAAPV1=A/(1+r)PV2=A/(1+r)2PV3=A/(1+r)3PV4=
19-TimeValueof𝑃
+⋯1+𝑝𝑃=
+⋯r×𝑃= 𝑃=20-DiscountedCashNetPresentValue=𝐶
+
11+𝑝
+⋯
1+𝑝1+𝑝
1+𝑝1+𝑝
1+1+𝑝
1+𝐴=01+𝐴
1+
+⋯
=1+𝐴
1+𝐴InternalRateofReturnWhenNPV=0,thediscount21-B公司计划以 一台新机器,希望的投资回报率为10%未来五年内公司预计现金流如下表所示,试求净现值 收益。01234522-
23-
24-TheIntroductionofTimeStatisticalProbabilityProbabilityPointEstimateandConfidenceHypothesisLinearDate25-StatisticalConceptsandMarketStatisticalBasicTypesofmeasurementFrequencyMeasuresofcentralMeasuresof26-StatisticalConceptsandMarketDescriptiveDescriptivestatisticsisthestudyofhow anbeeffectivelytodescribetheimportantaspectsoflargedataByconsolidatingamassofnumericaldetails,descriptivestatisticsdataintoInferentialMakesestimationsaboutalargesetofdata(apopulationwithsmallergroupofdata.27-StatisticalConceptsandMarketDefinitionofPopulation:ApopulationisdefinedasallmembersofspecifiedAnydescriptivemeasureofapopulationcharacteristiciscalledDefinitionofSample:AsampleisasubsetofaAsamplestatistic(orstatistic)isa tycomputedfromorusedtodescribeasample.28-StatisticalConceptsandMarketRelativeTherelativefrequencyofobservationsinanintervalisthenumberofobservations(theabsolutefrequency)intheintervaldividedbythetotalnumberofobservations.FrequencyAfrequencydistributionisatabulardisplayofdatasummarizedintorelativelysmallnumberofintervals.FrequencydistributionsysttoevaluatehowdataareCumulativefrequency/cumulativerelativeThecumulativerelativefrequencycumulates(addsup)therelativefrequenciesaswemovefromthefirstintervaltothelast..29-StatisticalConceptsandMarketConstructingafrequencyReal(Inflation-Adjusted)EquityReturns:NineteenMajorEquityArithmeticMeanArithmeticMeanNewSouthUnitedUnited30-StatisticalConceptsandMarketConstructingafrequencyFrequencyDistributionofAverageRealEquityFrequency(%)5.0to336.0to477.0to58.0to49.0to331-StatisticalConceptsandMarketMeasuresofcentraltendency:mode,median,Thearithmetic = Theweighted𝑤= 𝑖𝑖=1+⋯Thegeometric𝐺=𝑁= Theharmonic
32-
ExpectedExpectedValue:Ameasureofcentraltendency–thefirst𝑬𝑿= 𝑷𝑖𝑷11𝑷2𝑷3𝑷𝑎PropertiesofExpectedIfbisaconstant,E(b)=Ifaisaconstant,E(aX)=Ifaandbareconstants,thenE(aX+b)=aE(X)+E(b)=aE(X)+E(X2)≠E(X+Y)=E(X)+Ingeneral,E(XY)≠E(X)E(Y);IfXandYareindependentrandomvariables,thenE(XY)=E(X)E(Y).33-StatisticalConceptsandMarketAbsolutedispersion:istheamountofvariabilitypresentcomparisontoanyreferencepointor Range umvalue–minimum 𝑖− ForFor
𝑖𝑖=1 𝑖𝑖=1 𝑖𝑖=1 𝑖𝑖=1 −34-PropertiesofThevarianceofaconstantiszero.Bydefinition,aconstanthasIfaisconstant,then:σ2(aX)=Ifbisaconstant,then:σ2(X+b)=Ifaandbareconstant,then:σ2(aX+b)=IfXandYaretwoindependentrandomvariables,σ2(X+Y)=σ2(X)+ σ2(X–Y)=σ2(X)+IfXandYareindependentrandomvariablesandaandbarethenσ2(aX+bY)=a2σ2(X)+Forcomputationalconvenience,wecanget:σ2(X)=E(X2)–[E(X)]2,𝐸 35-36- 37-Covariancemeasureshowonerandomvariablemoveswithanotherrandomvariable.CovariancerangesfromnegativeinfinitytopositivePropertiesofIfXandYareindependentrandomvariables,theircovarianceisCov(X,X)=E[(X-E(X))(X-Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Cov(a+bX,c+dY)=bdCov(X,IfXandYareNOTindependent,σ2(X±Y)=σ2(X)+σ2(Y)±38-Correlation
𝐶PropertiesofCorrelationCorrelationhasnounits,rangesfrom-1toCorrelationmeasuresthelinearrelationshipbetweentwoIftwovariablesareindependent,theircovarianceiszero,therefore,thecorrelationcoefficientwillbezero.Theconverse,however,isnottrue.Forexample,Y=X2.Variancesofcorrelatedσ2(X±Y)=σ2(X)+σ2(Y)±39-Correlationr=perfectpositive0<r<positivelinearr=nolinear-1<r<negativelinearr=-perfectnegativeperfectpositivecorrelationrperfectpositivecorrelationr=perfectpositivecorrelationr=0.8perfectpositivecorrelationr=perfectnegativecorrelationr=-0.7perfectnegativecorrelationr=-StatisticalConceptsandMarketPositive(right)Negative(left)AdistributionthatisnotsymmetricaliscalledPositiveskewed:Mode<median<mean,havingarightfatNegativeskewed:Mode>media>mean,havingaleftfat41-StatisticalConceptsandMarketKurtosisisthestatisticalmeasure lsuswhenadistributionisorlesspeakedthananormalLeptokurticvs.AdistributionthatismorepeakedthannormaliscalledAdistributionthatislesspeakedthannormaliscalledSample42-StatisticalConceptsandMarket43-TheIntroductionTimeStatisticalProbabilityPointEstimateandConfidenceHypothesisLinearDate44-ProbabilityTwodefiningpropertiesofMultiplicationruleandAdditionDependentandindependentExpected45-46-47-48-ProbabilityBasicRandomvariablea tywhosevalueisuncertain.Thereturnonariskyassetisanexampleofarandomvariable.esarethepossiblevaluesofarandomAneventisaspecifiedset Mutuallyexclusiveevents—cannotbothhappenatthesameExhaustiveevents—includeall Probabilityofan𝐧𝑷𝑨
TwodefiningpropertiesofTheprobabilityofanyeventEisanumberbetween0and1:0≤P(E)≤Thesumoftheprobabilitiesofanysetofmutuallyexclusiveexhaustiveeventsequals1:P(E1)+P(E2)+……+49-ProbabilityUnconditionalprobability(marginalprobability):Supposethequestionis“Whatistheprobabilitythatthestockearnsareturnabovetherisk-freerate(eventA)?”TheanswerisanunconditionalprobabilitythatcanbeviewedastheratiooftwoConditionalprobability:Supposewewanttoknowtheprobabilitythatthestockearnsareturnabovetherisk-freerate(eventA),giventhatthestockearnsapositivereturn(eventB).Withthewords“giventhat,”wearerestrictingreturnstothoselargerthan0percent—anewelementincontrasttothequestionthatbroughtforthanunconditionalprobability.Theconditionalprobabilityiscalculatedastheratiooftwo P(A|B)P(AB);P(B)0 P(B|A)P(AB);P(A)0 P(A)50-ProbabilityJointprobability:MultiplicationThejointprobabilityofAandBcanbeIfAandBaremutuallyexclusivethen:ProbabilitythatatleastoneoftwoeventswillAdditionrule:GiveneventsAandB,theprobabilitythatAorBoccurs,orbothoccur,isequaltotheprobabilitythatAoccurs,plustheprobabilitythatBoccurs,minustheprobabilitythatbothAandBoccur.P(AorB)=P(A)+P(B)-IfAandBaremutuallyexclusiveevents,then:P(AorB)=P(A)+P(B)51-ProbabilityIndependentDefinitionofIndependentEvents:TwoeventsAandBareifandonlyifP(A|B)=P(A)or,equivalently,P(B|A)=MultiplicationRuleforIndependentEvents.Whentwoeventsareindependent,thejointprobabilityofAandBequalstheproductoftheindividualprobabilitiesofAandB:P(AB)=P(A)×P(B)IndependenceandMutuallyExclusivearequiteIfexclusive,mustnotCauseexclusivemeansifAoccur,Bcannotoccur,Ainfluents52-TheIntroductionofTimeStatisticalProbabilityPointEstimateandConfidenceHypothesisLinearDate53-CommonProbabilityCommonProbabilityPropertiesofdiscretedistributionandcontinuousDiscreteuniformContinuousuniformNormal54-CommonProbabilityDescribetheprobabilitiesofallthe esforaDiscreteandcontinuousrandomDiscreterandomvariablestakeonatmostacountablenumber esbutdonotnecessarilytobeContinuousrandomvariables:cannotdescribethe esacontinuousrandomvariableZwithalistz1,z2,...becausee(z1+z2)/2,notinthelist,wouldalwaysbeP(x)=0eventhoughxcanP55- Fordiscreterandom0≤p(x)≤Probabilitydensityfunction(p.d.f):ForcontinuousrandomvariableCumulativeprobabilityfunction(c.p.f):56-CumulativeDistributionFunction0
P(a≤X≤b)=F(b)– P(a≤X≤b)=Areaunderbetweenaand=F(b)–
57-BinomialBernoulliP(X=1)= P(X=0)=1–BinomialTheprobabilityofksuccessesinn
−𝑘
𝑝𝑘=𝑃𝑋=𝑘=
𝑝1−
𝑝
1−ExpectationsandBernoullirandompp(1–Binomialrandomnp(1–58-BinomialBinomialk012……n59-BinomialTheBinomialDistribution–Binomial emoresymmetricasn60-DiscreteDiscreteuniformdistributionwouldbeaknown,finitenumberofesequallylikelytohappen.Everyoneofn eshasequalprobabilityForexample,rollingadicewillhave6 esInthatcase,theprobabilityforeach eis0.167[i.e.61-ContinuousUniformAllintervalsofthesamelengthontheContinuousUniformDistribution'ssupportareequallyprobable.Thesupportisdefinedbythetwoparameters,aandb,whichareminimum umPropertiesofContinuousuniformForalla≤x1<x2𝑃𝑋≤ P(X<aorX>b)=62-63-CommonProbabilityTheshapeofthedensityxX~N(µ,Symmetricaldistribution:skewness=0;Alinearcombinationofrandomvariablestheseareinnormallydistributionisalsonormallydistributed.Asthevaluesofxgetsfartherfromthemean,theprobabilitydensitygetsmallerandsmallerbutarealwayspositive.64-CommonProbabilityTheconfidence,𝜇+,𝜇+,𝜇+,𝜇+ 65-CommonProbabilityStandardnormalN(0,1)orStandardization:ifX~N(µ,σ²),Z-P(Z>z)=1
ZX
~66-67-CommonProbabilityDefinition:IflnXisnormal,thenXislognormal,whichisusedtothepriceofRightBoundedfrombelowbyzero,soitisusefulformodelingasset 1068-EstimationandHypothesisWhatisStatisticalConcernedwithdrawingconclusionsaboutthenatureorsomepopulation(e.g.,thenormal)onthebasisofarandomsamplethatsupposedlybeendrawnfromthatpopulation.Looselyspeaking,isthestudyoftherelationshipbetweenaandasampledrawnfromthatSamplingandsamplepopulation69-TheIntroductionofTimeStatisticalProbabilityProbabilityPointEstimateandConfidenceHypothesisLinearDate70-SamplingandPointthestatistic,computedfromsampleinformation,whichisusedtoestimatethepopulationparameterConfidenceintervalarangeofvaluesconstructedfromsampledatasotheparameterwithinthatrangeataspecified71-EstimationandHypothesisEstimationofPointUsingasinglenumericalvaluetoestimatetheparameterofthe𝑋→ 72-EstimationandHypothesisConfidenceintervalUsinganintervaltoestimatethescopeofthe73-CharacteristicsofProbabilityFromthePopulationtotheSampleThesamplemeanofarandomvariableXisgenerallydenotedbythesymbol(readasXbar)andisdefinedas=
ThesamplemeanisknownasanestimatorofE(X),whichwecannowcallthepopulationmean.Anestimateofthepopulationissimplythenumericalvaluetakenbyanestimator.74-SampleSample Thesamplevariance,denotedby𝑆𝑆2whichisanestimatorof𝜎𝜎2,whichwecannowcallthepopulationvariance.Thesamplevarianceis 2
=
𝑖−2−Theexpression(n–1)isknownasthedegreesofIfthesamplesizeisreasonablylarge,wecandividebyninsteadof(nSX(thepositivesquarerootofSamplevariance),iscalledthestandard75-TheCentralLimitTheCentralLimitTheoremIfX1,X2,…,Xnarandomsamplefromanypopulationprobabilitydistribution)withmeanand𝜎𝜎2,thesample2 𝑋tendstobenormallydistributedwithmean𝜇𝜇 asthesamplesizeincreases y(technically, y)Ofcourse,iftheXihappentobefromthenormalpopulation,thesamplemeanfollowsthenormaldistributionregardlessofthesamplesize.76-StatisticalInference:EstimationandHypothesisEstimationandHypothesisTesting:TwinBranchesOfStatisticalPricetoearning(P/E)ratiosof28companiesontheNewYorkstockexchange(NYSE)TCMean= Samplestandarddeviation=77-BestLinearUnbiasedEstimatorPropertiesofpointThemeanoftheestimatorscoincideswiththetrueparameter
=Anunbiasedestimatorisalsoefficientifthevarianceofitssamplingdistributionissmallerth ltheotherunbiasedestimatorsoftheparameteryouaretryingtoestimate.e.g.𝑁𝜇,
Theaccuracyoftheparameterestimateincreasesasthesamplesizeincreases(seethestandarderror).78-BestLinearUnbiasedEstimatorAnotherpropertyofapointestimateislinearity.Apointestimateshouldbealinearestimator(i.e.,itcanbeusedasalinearfunctionofthesampledata).Iftheestimatoristhebestavailable(i.e.,hastheminimumvariance),exhibitslinearity,andisunbiased,itissaidtobethebestlinearunbiasedesti
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《机械零件加工》课件课程定位
- 新余学院《英语课程与教学论》2023-2024学年第一学期期末试卷
- 新余学院《大学物理》2021-2022学年第一学期期末试卷
- 西南林业大学《居住区景观设计实验》2022-2023学年第一学期期末试卷
- 应急管理安全培训
- 西华大学《手工制作一》2022-2023学年第一学期期末试卷
- 2024年01月11345市场调查期末试题答案
- 西华大学《传热学》2022-2023学年第一学期期末试卷
- 八年级英语上学期 单项选择常考点易错考点及专项训练
- 八年级历史期末模拟卷(考试版)【测试范围:八上全册】(新疆专用)
- 人力资源部人事科运用PDCA循环提升医院岗前培训的有效性
- 2023年广东省深圳市事业单位笔试参考题库(共500题)答案详解版
- 药疹护理的课件
- 心脏康复护理专家共识解读
- (IT项目管理)实验指导书
- 驾驶服务外包投标方案(完整版)
- 客房服务员国家标准
- 工业产品质量安全风险管控清单及日管控、周排查、月调度记录表
- 音乐学专业职业生涯规划书
- 《跨文化交流》课件
- 影像测量仪作业指导书
评论
0/150
提交评论