版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市顺义区2021-2022学年高二下学期期末数学试题一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.A;的值为()A.20B.10C.5D.22.(I—l)"的展开式中,炉的系数为()A.12B.-12C.6D.-63.已知离散型随机变量X的分布列如下表,则X的数学期望E(X)等于()RnnEHE0A.0.3B.0.8C.1.2D.1.34.设函数/(x)=」一,1则r⑴=()A.OB」4C.1ID.-45.已知函数y=f(x)的部分图象如图所示,其中A(玉,/(xJbBlW,/lwD.ClF'/Xx,))为图上三个不个核酸检测点,居民可以选择任意一个点位去做核酸检测,现该小区的3位居民要去做核酸检测,则检测点的选择共有()同的点,则下列结论正确的是()U.o B同的点,则下列结论正确的是()U.o Ba.ra)>r(x2)>ra)c.r(F)>ra)>r(w)B./'(七)>/'(/)>/'(xJd.r(xj>ra)>r(w)6.已知某居民小区附近设有4,B,C,04A.64种 B.81种 C.7种 D.12种7.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马、"马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛,马,羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,他们各应偿还多少?试问:该问题中牛主人应偿还()斗粟TOC\o"1-5"\h\z5 20 5 10A.- B.— C.- D.—7 7 2 7.降低室内微生物密度的有效方法是定时给室内注入新鲜空气,即开窗通风换气.在某室内,空气中微生物密度(c)随开窗通风换气时间(D的关系如下图所示.则下列时间段内,空气中微生物密度变化的平均速度最快的是()C.[5,20]C.[5,20]D.[5,35].已知数列{/}为各项均为整数的等差数列,公差为d,若4=1,4=25,则〃+d的最小值为()A.9 B.10 C.11 D.12.已知是函数/(xhV+o?+b元+c的极大值点,则下列结论不正聊的是()A.BxeR,f(x)>f(x0>) B./(x)一定存在极小值点C.若。=0,则一玉)是函数f(x)的极小值点 D.若6=0,则a<0二、填空题共5小题,每小题5分,共25分..已知等差数列4=3,%=7,则q=..某学校拟邀请5位学生家长中的3位参加一个座谈会,其中甲同学家长必须参加,则不同的邀请方法有种..已知某品牌只卖A,8两种型号的产品,两种产品的比例为8:2,其中A型号产品优秀率为75%,B型号产品优秀率为90%,则购买一件该品牌产品为优秀品的概率为..函数/(x)=er+,-x的最小值为..已知数列{(},满足不等式(其中〃eN*,〃N2),对于数列{《,}给出以下四个结论:①aA-a3>a3-a2•②数列{《,}一定是递增数列:③数列{《,}通项公式可以是。"=2":④数列{《,}的通项公式可以是=/一6〃.所有正确结论的序号是.三、解答题共6小题,共85分.解答应写出必要的文字说明、演算步骤或证明过程..己知展开式中第2项与第5项的二项式系数相等.(1)求”的值;(2)求展开式中各项系数的和;(3)判断展开式中是否存在常数项,并说明理由..已知函数/(xXd-Y.(1)求f(x)单调区间;(2)求〃x)在区间[0,2]上的最值..下表为高二年级某班学生体质健康测试成绩(百分制)的频率分布表,已知在[65,75)分数段内的学生数为14人.分数段[65,70)[70,75)[75,80)(80,85)[85,90)[90,95)[95,100]频率0.120.160.20.180.140.1a(1)求测试成绩在[95/00]分数段内的人数;3(2)现从[95,100]分数段内的学生中抽出2人代表该班参加校级比赛,若这2人都是男生的概率为求[95,100]分数段内男生的人数;(3)若在[65,70)分数段内的女生有4人,现从[65,70)分数段内的学生中随机抽出3人参加体质提升锻炼小组,记X为从该组轴出的男生人数,求X的分布列和数学期望E(X)..已知数列{勺}为等差数列,前〃项和为S,,,数列也}是以q(q>0,qxl)为公比的等比数列,且%=b、=1,=9,S5=4+>+5.(1)求数列{4},{"}通项公式;(2)求数列也}的前〃项和7;;(3)数列{c“}满足记数列{%}的前〃项和为M“,求的最小值..已知函数/(x)=xlnx.(1)求曲线y=f(x)在点(1,/⑴)处的切线方程;(2)若函数g(x)=/(x)+]x2在区间(o,+8)上单调递减,求实数。的取值范围.(3)证明:/(x)+x2+2>0..若存在某常数M(或机),对于一切〃eN*,都有44M(或426),则称数列{4}上(或下)界,若数列加“}既有上界也有下界,则称数列{凡}为“有界(1)已知4个数列的通项公式如下:①”“=22;②"=4+,;③c“=2〃+l;④=(-1)..请写出n其中“有界数列''的序号;(2)若%=1三,判断数列{a“}是否为"有界数列”,说明理由;(3)在(2)的条件下,记数列{。“}的前〃项和为S“,是否存在正整数鼠使〃NZ,都有成立?若存在,求出火的范围:若不存在,说明理由.D.2D.2D.-6北京市顺义区2021-2022学年高二下学期期末数学试题一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.A;的值为()A.20 B.10 C.5【答案】A【解析】【分析】由排列数定义计算.【详解】A;=5x4=20故选:A.(1—A:)」的展开式中,/的系数为()A.12 B.-12 C.6【答案】C【解析】【分析】写出展开式的通项,再代入计算可得;【详解】解:二项式(1一幻4展开式的通项为,所以[=C;(-x)2=6x2,即以的系数为6:故选:C.已知离散型随机变量X的分布列如下表,则X的数学期望E(X)等于()A.0.3 B.0.8 C.1.2 D.1.3【答案】D【解析】【分析】根据分布列的性质求出。,再根据期望公式计算可得:【详解】解:依题意可得0.2+a+0.5=l,解得a=0.3,所以E(X)=OxO.2+lxO.3+2xO.5=L3:故选:D.设函数/(x)= ,则/'(1)=()x+1TOC\o"1-5"\h\z1 1A.O B.一一 C.1 D.-4 4【答案】B【解析】【分析】求出导函数,直接代入求解.【详解】因为函数y(x)=-L,所以/'(*)=一1二,所以/'⑴=-Lx+l (X+1) 4故选:B5.已知函数y=f(x)的部分图象如图所示,其中A(玉,/(西)),8(9,/(毛)),。(七,/(&))为图上三个不同的点,则下列结论正确的是()a.r(x1)>/,(x2)>/,(x3) B./(%,)>/,(^)>/,(x1)c.广㈤〉〃%!)〉〃』) d./,(为)>/(%,)>〃玉)【答案】B【解析】【分析】结合函数图形及导数的几何意义判断即可;【详解】解:由图可知函数在A点的切线斜率小于0,即/'(xJ<0,在O点的切线斜率等于0,即/'(毛)=0,在。点的切线斜率大于0,即/"(x,)>。,所以/'(七)>/'(%)>/'(百);故选:B6.已知某居民小区附近设有4,B,C,04个核酸检测点,居民可以选择任意一个点位去做核酸检测,现该小区的3位居民要去做核酸检测,则检测点的选择共有()A.64种 B.81种 C.7种 D.12种【答案】A【解析】【分析】由分步计数原理计算.【详解】3位居民依次选择检测点,方法数为4,=64.故选:A.7,中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主日:“我羊食半马、”马主日:“我马食半牛,,,今欲衰偿之,问各出几何?此问题的译文是:今有牛,马,羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半,”马主人说:“我马所吃的禾苗只有牛的一半”打算按此比例偿还,他们各应偿还多少?试问:该问题中牛主人应偿还()斗粟TOC\o"1-5"\h\z5 20 5 10A.- B.— C.- D.—7 7 2 7【答案】B【解析】【分析】牛主人应偿还x斗粟,由题意列方程即可解得.V V【详解】设牛主人应偿还X斗粟,则马主人应偿还一斗粟,羊主人应偿还一斗粟,2 4xx 20所以x+±+4=5,解得:x=—.24 7故选:B8.降低室内微生物密度的有效方法是定时给室内注入新鲜空气,即开窗通风换气.在某室内,空气中微生物密度(c)随开窗通风换气时间(力的关系如下图所示.则下列时间段内,空气中微生物密度变化的平均速度最快的是()/1c(mg/m3)i। । ■ . < > >o5101520253035(min)A.[5,10] B.[5,15] C.[5,20] D.[5,35]【答案】C【解析】【分析】连接图上的点,利用直线的斜率与平均变化率的定义判断即可;【详解】解:如图分别令,=5、r=10,『=15、1=20、f=35所对应的点为A、b、C、。、E,由图可知0>&tB>kAC>kAE>kAD>所以[5,20]内空气中微生物密度变化的平均速度最快;故选:C9,已知数列{。“}为各项均为整数的等差数列,公差为d,若4=1,4,=25,则〃+d的最小值为()A.9 B.10 C.11 D.12【答案】C【解析】24【分析】由题意可得(〃-1)1=24,得〃=——,由于等差数列的各项均为正整数,得到公差d也为正整n-\数,即为24的约数,从而可求出相应的〃的值,进而可求出〃+d的最小值【详解】因为4=1,4=25,所以=4+(〃一l)d=l+(n-l)J=25,所以(〃—l)d=24,24所以d二一,n-\因为数列{”“}为各项均为整数的等差数列,所以公差d也为正整数,所以d只能是1,2,3,4,6,8,12,24,此时〃的相应取值为25,13,9,7,5,4,3,2,所以〃+d的分别为26,15,12,11,11,12,15,26,所以〃+d的最小值为11,故选:C10.已知事(垢HO)是函数= +℃2+〃x+c的极大值点,则下列结论不,碰的是()A.3xeRJ(x)>/(/) B.f(x)一定存在极小值点C.若。=0,则一/是函数f(x)的极小值点 D.若力=0,贝Ija<o【答案】D【解析】【分析】求出导函数/‘(X),/。)=。有两个不等实根,然后由极值点、单调性与/'(x)=o的根的关系判断各选项.【详解】f'(x)=3x2+2ax+b,X。是极大值点,r(x)=0有两个不等实根,△=4/_126>0,即。2>3力,设/'。)=。有两不等实根与和4,%是极大值点,则彳<演)时,f'(x)>0,与<彳<々时,ru)<o,从而x>%时,r(x)>o,々是极小值点.b正确;由于XT+00时,/(x)f+oo,因此A正确;若。=(),则/'。)=3/+匕,〃<o,r(x)=o的两解互为相反数,即%=-玉),c正确;人=0时,a2>0>a/O,D错.故选:D.二、填空题共5小题,每小题5分,共25分..已知等差数列{a,,}.4=3,%=7,则%=.【答案】5【解析】【分析】由等差数列的性质计算.【详解】由题意2%=%+%=1°,4=5.故答案为:5..某学校拟邀请5位学生家长中的3位参加一个座谈会,其中甲同学家长必须参加,则不同的邀请方法有种.【答案】6【解析】【分析】从剩下的四位家长中选2位即可得.【详解】甲同学家长必须参加,则还需从剩下的4位家长中选2位,方法数为C:=6.故答案:6..已知某品牌只卖A,8两种型号的产品,两种产品的比例为8:2,其中4型号产品优秀率为75%,B型号产品优秀率为90%,则购买一件该品牌产品为优秀品的概率为.【答案】78%##078【解析】【分析】根据全概率公式直接求解.Q 2【详解】根据题意,购买一件该品牌产品为优秀品的的概率为:一x75%+—x90%=78%.10 10故答案为:78%..函数/(x)=et+,-x的最小值为.【答案】1【解析】【分析】求出导函数,确定单调性可得最小值.【详解】ru)=et+1-l,由r(x)>0得X>—1,/'(x)<0得/(x)在(—℃!,—1)上递减,在(―1,+06上递增,所以/⑴的极小值也是最小值为/(-I)=1.故答案为:1..已知数列{叫,满足不等式Z4Wqu+a/i(其中〃eN*,〃N2),对于数列{““}给出以下四个结论:①a4-a3>a3-a2-②数列{勺}一定是递增数列;③数列{《,}通项公式可以是(=2";④数列{《,}的通项公式可以是=〃2-6”.所有正确结论的序号是.【答案】①③④【解析】【分析】求得氏一。3与。3一。2的大小关系判断①:举反例否定②;利用题给条件证明数列{4“}的通项公式可以是q=2"肯定③:利用题给条件证明数列{《,}的通项公式可以是=〃2-6〃肯定④.【详解】数列{““}满足不等式2例《。小+%+1(其中〃eN",”N2),则有。“一a-i(其中”eN*,〃N2),①由a3-a2<a4-aj,可得4一%2%一%•判断正确;②当=6时,满足2a. +%+],数列{““}为常数列.则数列{«,}不一定是递增数列.判断错误;③当。“=2"时,由2"T>0,可得2x2"42"T+2"',即不等式2an<an_x+a„+l成立,则数列{”“}的通项公式可以是an=2".判断正确;④当an=n2-6/2时,+a“+])=2 —6”)— —1)—6(〃—++ —6(n+l)^=—2<0则不等式2a“ 成立,则数列{”“}的通项公式可以是q=〃2-6〃.判断正确;故答案为:①③④三、解答题共6小题,共85分.解答应写出必要的文字说明、演算步骤或证明过程..已知(x+3)的展开式中第2项与第5项的二项式系数相等.(1)求”的值;(2)求展开式中各项系数的和:(3)判断展开式中是否存在常数项,并说明理由.【答案】(1)5: (2)1024;(3)不存在.【解析】【分析】(1)利用第2项与第5项的二项式系数相等,列方程C;=C:,即可解得;(2)利用赋值法令x=l代入可得;(3)利用通项公式列方程求解即可.【小问1详解】的展开式的通项公式为=3'C:x"2.因为展开式中第2项与第5项的二项式系数相等,所以C:=C:,解得:〃=5.【小问2详解】要求展开式中各项系数的和,只需令x=l代入可得:(1+3)5=1024.即展开式中各项系数的和为1024.【小问3详解】要求展开式中的常数项,只需在7;+1=3'C"5-2,中,令5—2r=0,而reN*,所以无解,即展开式中不存在常数项..已知函数/(工)=/一%2.(1)求;'(x)单调区间:(2)求"X)在区间[0,2]上的最值.【答案】(1)f(x)单调递增区间为(一8,0),(|,+8),单调递减区间为(0,g):4(2)最小值为 ,最大值为4【解析】【分析】(1)先求定义域,再求导,利用导函数的正负求出单调区间;(2)结合第一问求出最小值,再比较端点值求出最大值.【小问1详解】,(x)=--定义域为R,f'(x)—3x2-2x,2令/'(x)>0得:或x<0,32令/'(x)<0得:0<x<£,3所以f(x)单调递增区间为(-8,0),(|,+8),单调递减区间为【小问2详解】由(1)可知:/(X)在x=|处取得极小值,且为最小值,故/(力而0=(1) =<,又因为/(O)=OJ(2)=23-22=4,而4>0,所以“x)3=4,4所以/(X)在区间[0,2]上的最小值为 ,最大值为42718.下表为高二年级某班学生体质健康测试成绩(百分制)的频率分布表,已知在[65,75)分数段内的学生数为14人.分数段[65,70)[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频率0.120.160.20.180.140.1a(1)求测试成绩在[95,100]分数段内的人数;3(2)现从[95,100]分数段内的学生中抽出2人代表该班参加校级比赛,若这2人都是男生的概率为求[95,100]分数段内男生的人数;(3)若在[65,70)分数段内的女生有4人,现从[65,70)分数段内的学生中随机抽出3人参加体质提升锻炼小组,记X为从该组轴出的男生人数,求X的分布列和数学期望E(x).【答案】(1)5 (2)4(3)分布列见解析,E(X)=1【解析】【分析】(1)利用在[65,75)分数段内的学生数为14人求出高二年级某班学生总数,再利用频率和为1求出“,两数相乘可得答案;C23(2)设男生有x人,根据抽出2人这2人都是男生的概率为尤=一,解得x可得答案;C;5(3)求出在[65,70)分数段内的学生人数及男生人数,可得X的取值及对应的概率,可得分布列和期望.【小问1详解】_14高二年级某班学生共有——=50人,0.28因为0.12+0.16+0.2+0.18+0.14+0.1+4=1,所以。=0.1,所以测试成绩在[95,100]分数段内的人数为50x()』=5人.【小问2详解】由(1)知在[95/00]分数段内的学生有5人,设男生有x人,3若抽出2人这2人都是男生的概率为g,C23则涓=三,解得x=4,所以在[95,100]分数段内男生有4人.【小问3详解】在[65,70)分数段内的学生有50x0.12=6人,所以男生有2人,X的取值有0,1,2,p(x=o)=|f=l,c2c]3P(X=1)=*?X的分布列为X012P]_5253IE(X)=0x-+lx-+2x-=l.19.已知数列{4}为等差数列,前〃项和为S“,数列{〃,}是以4(q>0,gHl)为公比的等比数列,且4=4=1,S3=9,S5=4+々+5.(1)求数列{4},{"}通项公式;(2)求数列也}的前〃项和7;:(3)数列{qj满足c“=log'/“—4,记数列{%}的前〃项和为M“,求的最小值.【答案】(1)an=2n-\,bn=2n-'Tn=2n-\-10【解析】【分析】(I)根据§3=9,求出公差,从而求出通项公式,结合55=4+々+5求出公比,得到等比数列的通项公式;(2)利用等比数列求和公式求解;(3)先求出c,=〃-5,结合{%}的增减性和正负性求出当〃=4或5时,”“取得最小值,求出最小值【小问1详解】S3=30I+3J=9,因为q=l,所以d=2,故a”=l+2(n-l)=2n-l,所以S5=5q+10d=5+20=25,故4+4+5=25,又题意得:b5=bxq=q=btq2=q~,所以1+才—20=0,解得:/=4或一5(舍去),因为q>0,所以4=2,所以勿=2【小问2详解】数列出}的前〃项和Tn==■=2"—11—2【小问3详解】Cn=log/”-4=log22"T-4=〃-5,可以看出匕}为递增数列,且当〃4,4]时,cn<0,当〃=5时,q,=0,当〃>5时,c„>0,所以当〃=4或5时,M“取得最小值,最小值为-4—3—2—1=—1020.已知函数/(x)=xlnx.(1)求曲线y=f(x)在点(1,/⑴)处的切线方程;(2)若函数g(x)=f(x)+]x2在区间(0,+8)上单调递减,求实数。的取值范围.(3)证明:f(x)+x2+2>0.【答案】(1)y=x-l;a<-\;(3)证明见解析.【解析】【分析】(1)求出导函数/'(x),计算/'⑴得切线斜率,计算/(D,由点斜式得切线方程;(2)由g'(x)40在(0,+8)上恒成立,然后分离参数转化为求新函数的最值;(3)由导数求得A*)的最小值后,由不等式性质得证.【小问1详解】f\x)=\nx+\,r(l)=l,又/⑴=0,所以切线方程为y=x-i:【小问2详解】g(x)=x\nx+^x2,由题意g'(x)=lnx+l+axW0在(0,+oo)上恒成立,、“,,、lnx+1…、 1—(lnx+1)Inx设〃(x)= ,则〃'(x)=——J-=^-,X X X0<x<l时,h'(x)<0,〃(x)递减,x>l时,h'(x)>0,/i(x)递增,所以〃(X)min=〃(D=T,所以aW—1【小问3详解】由(1)/'(x)=lnx+1,0<x<-时,f'(x)<0,f(x)递减,x>1时,f'(x)>0,f(x)递增
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《ERCP术后胆总管结石复发的相关危险因素分析》
- 《血浆sCD26、sCD30的浓度与桥本甲状腺炎的相关性》
- 《过渡金属氢氧化物及其衍生物的制备和电催化性能研究》
- 2024年孝感大客车从业资格证考试试题
- 2024年拉萨客运资格证考试题库答案解析
- 2024年福州道路旅客运输资格证考试
- 2024年四平道路运输从业资格证考试
- 单车租借协议模板2024年适用
- 高中地理选择性必修3期末试卷及答案-人教版-2024-2025学年
- 软件资格考试系统集成项目管理工程师(中级)(基础知识、应用技术)合卷试卷及答案指导
- 中国女性生理健康白皮书
- 天然气巡检记录表
- 甲苯磺酸瑞马唑仑临床应用
- 民法典讲座-继承篇
- 外包施工单位入厂安全培训(通用)
- 糖尿病健康知识宣教课件
- 客户接触点管理课件
- Python语言学习通超星课后章节答案期末考试题库2023年
- 医学-心脏骤停急救培训-心脏骤停急救教学课件
- 高中英语-Book 1 Unit 4 Click for a friend教学课件设计
- 年产30万吨碳酸钙粉建设项目可行性研究报告
评论
0/150
提交评论