圆的基本性质练习含答案详解_第1页
圆的基本性质练习含答案详解_第2页
圆的基本性质练习含答案详解_第3页
圆的基本性质练习含答案详解_第4页
圆的基本性质练习含答案详解_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆的基本性质练习含答案详解圆的基本性质练习含答案详解圆的基本性质练习含答案详解圆的基本性质练习含答案详解编制仅供参考审核批准生效日期地址:电话:传真:邮编:圆的基本性质考点1对称性圆既是________①_____对称图形,又是______②________对称图形。任何一条直径所在的直线都是它的____③_________。它的对称中心是_____④_______。同时圆又具有旋转不变性。温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。考点2垂径定理定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点3圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___eq\o\ac(○,11)____________,所对的弦_____eq\o\ac(○,12)___________。(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____eq\o\ac(○,13)___________,所对的弧______eq\o\ac(○,14)__________。方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。温馨提示:(1)上述定理中不能忽视“在同圆或等圆中”这个条件。否则,虽然圆心角相等,但是所对的弧、弦也不相等。以同心圆中的圆心角为例,相等的圆心角在同心圆中,所对的弧与弦都不相等。(2)在由弦相等推出弧相等时,这里的弧要么是优弧,要么是劣弧,不能既是优弧又是劣弧。考点4圆周角定理及其推论定理:在同圆或等圆中,同弧或等弧所对的圆周角______eq\o\ac(○,15)__________,都等于这条弧所对的圆心角的______eq\o\ac(○,16)________。推论:半圆或直径所对的圆周角是_______eq\o\ac(○,17)________,90°的圆周角所对的弦是______eq\o\ac(○,18)__________。方法点拨:定理中的推论应用十分广泛,一般情况下用它来构造直角三角形,若需要直角或证明垂直时,通常作出直径就能解决问题。温馨提示:定理中的“同弧或等弧”不能改为是“同弦或等弦”。因为在圆中一条弦所对的圆周角有两个,这两个圆周角互补。<<名题精解>>例1:如图1,正方形ABCD是⊙O的内接正方形,点P在劣弧上不同于点C得到任意一点,则∠BPC的度数是()A.B.C.D.ODAODABC例3图例1图ABCDEO例2图例2:如图,在中,的度数为是上一点,是上不同的两点(不与两点重合),则的度数为()A. B. C. D.例3:高速公路的隧道和桥梁最多.如图是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面=10米,净高=7米,则此圆的半径=()A.5B.7C.D.训练一、选择题(每题3分,共30分)1.(09年南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A. B. C. D.第3题图第4题图第1题图第2题图第3题图第4题图第1题图第2题图2.(09年天津市)如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A.28°B.56° C.60°D.62°3.(09南宁)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为,则弦CD的长为()A. B. C. D.4.(09年安徽)如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2B.3C.4D.55.(09年安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°6.(09年重庆)如图,⊙O是△ABC的外接圆,AB是直径.若∠BOC=80°,则∠A等于()A.60° B.50° C.40° D.30°第6题图第7题图第8题图第9题图B第6题图第7题图第8题图第9题图BCDA7.(09年兰州)如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米B.8米C.7米D.5米8.(09年山东青岛市)一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽米,最深处水深米,则此输水管道的直径是()A.米 B.米 C.米 D.1米9.(09山西省太原市)如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A. B.5C. D.610.(09年云南省)如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是()A.35°B.55°C.65°D.70°第10题图第11`题图第12题图第13题图第10题图第11`题图第12题图第13题图二、填空题(每小题3分,共30分)11.(09年长沙)如图,AB是⊙O的直径,C是⊙O上一点,∠BOC=44°,则∠A的度数为.12.(09年长春)如图,点在以为直径的上,,则的长为.13.(09年福州)如图,AB是⊙O的直径,点C在⊙O上,OD∥AC,若BD=1,则BC的长为14.(09年北京市)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=,则∠ABD= °.第14题图第15题图第16题图第17题图第14题图第15题图第16题图第17题图15.(09年山东青岛市)如图,AB为⊙O的直径,CD为⊙O的弦,∠ACD=42°,则∠BAD=__________°.16.(09年新疆乌鲁木齐市)如图,点C、D在以AB为直径的⊙O上,且CD平分,若AB=2,∠CBA=15°,则CD的长为.17.(09年广东省)已知⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30则BC=______cm.18.(09年山西省)如图所示,、、、是圆上的点,则—度.第18题图第20题图第18题图第20题图19.(09年上海市)在⊙O中,弦AB的长为6,它所对应的弦心距为4,那么半径OA=.20.(09成都)如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么BD=_________.三、解答题(共60分)第21题图21.(本题6分)(09年广西钦州)已知:如图,⊙O1与坐标轴交于A(1,0)、B(5,0)两点,点O1的纵坐标为.求⊙O1的半径.第21题图第22题图22.(本题6分)(’09年四川省内江市)如图,四边形ABCD内接于圆,对角线AC与BD相交于点E、F在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.第22题图求证:(1)CD⊥DF;(2)BC=2CD.第22题图第22题图23.(本题6分)(09年甘肃庆阳)如图,在边长为2的圆内接正方形ABCD中,AC是对角线,P为边CD的中点,延长AP交圆于点E.第23题图∠E=度;第23题图25.(本题7分)(09年株洲市)如图,点、、是上的三点,.(1)求证:平分.第25题图(2)过点作于点,交于点.若,,求的长.第25题图26.(本题9分)(09年潍坊)如图所示,圆是的外接圆,与的平分线相交于点,延长交圆于点,连结.(1)求证:;(2)若圆的半径为10cm,,求的面积.第27题图第27题图参考答案基础知识回放①轴②中心③对称轴④圆心⑤弦⑥弧⑦弦⑧弧⑨相等⑩相等eq\o\ac(○,11)相等eq\o\ac(○,12)相等eq\o\ac(○,13)相等eq\o\ac(○,14)相等eq\o\ac(○,15)相等eq\o\ac(○,16)一半eq\o\ac(○,17)直角eq\o\ac(○,18)直径例1、A例2、B例3、C中考效能测试1.B【解析】本题考查同弧所对的圆周角和圆心角的关系及垂径定理的应用.因为∠CDB=300,所以∠COB=600,所以在直角⊿COE中,OE=CO=,根据勾股定理可得CE=,所以CD=2CE=3cm.2.D【解析】本题考查了圆周角和圆心角的有关知识。根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,所以∠AOB=2∠C。∵OA=OB,∴∠OAB=∠OBA,又∵∠OAB=28°,∴∠AOB=124°,所以∠C=62°.故选D.3.B【解析】本题考查同弧所对的圆周角和圆心角的关系及垂径定理的应用.因为∠CDB=300,所以∠COB=600,所以在直角⊿COE中,OE=CO=,根据勾股定理可得CE=,所以CD=2CE=3cm.4.B【解析】由垂径定理,可得DH=,所以BH=又可得△DHB∽△ADB.,所以有.本题考查了垂径定理及相似三角形判定与性质。5.C【解析】由CD为腰上的高,I为△ACD的内心,则∠IAC+∠ICA=,所以又可证△AIB≌△AIC,得∠AIB=∠AIC=。6.C【解析】考查圆周角定理.同圆或等圆中,同弧或等弧所对的圆心角是圆周角的两倍,所以∠A是∠BOC的一半,答案为C.7.B【解析】本题主要考查直角三角形和垂径定理的应用。因为跨度AB=24m,拱所在圆半径为13m,所以找出圆心O并连接OB,延长CD到O,构成直角三角形,利用勾股定理和垂径定理求出DO=5,进而得拱高CD=CO-DO=13-5=8。故选B。8.D【解析】考查点:本题考查圆的垂径定理和解直角三角形的有关知识。解题思路:根据题意,我们可以通过添加辅助线得到如下图形:AAOBCD设圆的半径为R,则OA=R,由垂径定理可得AC=,OC=,在中,利用勾股定理可得:,解得R=,故该圆的直径为(米)。9.A【解析】本题考查圆中的有关性质,连接CD,∵∠C=90°,D是AB中点,AB=10,∴CD=AB=5,∴BC=5,根据勾股定理得AC=,故选A.10.B【解析】本题考查同弧所对的圆周角和圆心角的关系。法1:在同圆或等圆中,同弧所对的圆心角是圆角角的2倍,所以∠AOC=2∠D=700,而⊿AOC中,AO=CO,所以∠OAC=∠OCA,而1800-∠AOC=1100,所以∠OAC=550.法2:因为BC是直径,所以∠BAC=900,则∠OAC=900-∠BAO,而⊿AOB中,AO=BO,所以∠ABO=∠BAO,而∠ABO=∠D=350,从而问题得解。11.22°【解析】本题考查了圆周角和圆心角的有关知识。根据圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,所以本题的答案为。12.5【解析】因为AB是圆的直径,则它所对的圆周角为直角,又,根据在直角三角形中,30度角所对的直角边等于斜边的一半,则BC=5。13.2【解析】本题考查的是垂径定理和平行线、圆周角性质.因为AB是直径,所以它所对的圆周角为直角,再根据两条直线平行,同位角相等,所以OD⊥BD,根据垂径定理,可知,D为BD的中点,所以BC=2BD=2.14.28【解析】本题综合考查了垂经定理和圆周角的求法及性质。由垂径定理可知弧AC=弧AD,又根据在同圆或等圆中相等的弧所对的圆周角也相等的性质可知∠ABD=28°.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解。15.48【解析】连接OD,根据同弧所对的圆周角等于它所对的圆心角的一半可得,,又因OD=OA,所以。16.【解析】本题考查了垂径定理的基本图形.连接OC,过点O作OE,使OE⊥CD,垂足为点E,因为∠ABC=15°,OB=OC,所以∠OCB=15°,∠OCE=∠BCD-∠OBC=45°-15°=30°,在Rt△OCE中,CE=OC×cos30°=1×,所以CD=.17.4【解析】本题考察的是圆周角定理.根据直径所对的圆周角为直角可以得到∠C为直角.再根据30度角所对的直角边等于斜边的一半,所以BC=eq\f(1,2)AB=4cm.18.30【解析】∠1=∠A+∠B,∠B=30°,又∵∠C=∠B=30°.(同弧所对的圆周角相等)本题主要考查同弧所对的圆周角相等及三角形的外角的性质.有的同学会错误地应用同弧所对的圆周角等于圆心角的一半从而得到∠C=∠1=35°.19.5【解析】本题考查垂径定理与勾股定理。如图,在⊙O中,AB=6,OC⊥AB于C,则AC=AB=3,在Rt△AOC中,.20.3【解析】因为AB=BC,∠ABC=120°,则∠CAB=∠ACB=30°,又AD为⊙O的直径,则∠ABD=90°,又AD=6,AB=3,则BD=3。提炼知识。解:过点O1作O1C⊥AB,垂足为C,则有AC=B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论