功能高分子材料的制备方法-2011课件_第1页
功能高分子材料的制备方法-2011课件_第2页
功能高分子材料的制备方法-2011课件_第3页
功能高分子材料的制备方法-2011课件_第4页
功能高分子材料的制备方法-2011课件_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章功能高分子的制备方法2.1概述

特种与功能高分子材料的特点在于他们特殊的“性能”和“功能”,因此在制备这些高分子材料的时候,分子设计成为十分关键的研究内容。

设计一种能满足一定需要的功能高分子材料是高分子化学研究的一项主要目标。具有良好性质与功能的高分子材料的制备成功与否,在很大程度上取决于设计方法和制备路线的制定。

1第二章功能高分子的制备方法

功能高分子材料的制备是通过化学或者物理的方法按照材料的设计要求将功能基与高分子骨架相结合,从而实现预定功能的。

从上一世纪50年代起,活性聚合等一大批高分子合成新方法的出现,为高分子的分子结构设计提供了强有力的手段,功能高分子的制备越来越“随心所欲”。

2第二章功能高分子的制备方法

目前采用的制备方法来看,功能高分子材料的制备可归纳为以下三种类型:功能性小分子材料的高分子化;已有高分子材料的功能化;多功能材料的复合以及已有功能高分子材料的功能扩展。

本章由近年来高分子合成的新方法开始,介绍具有代表性的功能高分子设计的基本思路和方法。3第二章功能高分子的制备方法

Szwarc等人发现,在无水、无氧、无杂质、低温条件下,以四氢呋喃为溶剂,萘钠引发剂引发的苯乙烯阴离子聚合不存在任何链终止反应和链转移反应,在低温、高真空条件下存放数月之久其活性种浓度可保持不变。若再加入单体可得到更高相对分子质量的聚苯乙烯。基于此发现,Szwarc等人第一次提出了活性聚合(livingpolymerization)的概念。5第二章功能高分子的制备方法

活性聚合最典型的特征是引发速度远远大于增长速度,并且在特定条件下不存在链终止反应和链转移反应,亦即活性中心不会自己消失。这些特点导致了聚合产物的相对分子质量可控、相对分子质量分布很窄,并且可利用活性端基制备含有特殊官能团的高分子材料。6第二章功能高分子的制备方法已经开发成功的活性聚合主要是阴离子活性聚合。其他各种聚合反应类型(阳离子聚合、自由基聚合等)的链转移反应和链终止反应一般不可能完全避免,但在某些特定条件下,链转移反应和链终止反应可以被控制在最低限度而忽略不计。这样,聚合反应就具有了活性的特征。通常称这类虽存在链转移反应和链终止反应但宏观上类似于活性聚合的聚合反应为“可控聚合”。7

活性聚合

8

传统的阳离子活性聚合由于阳离子活性种特别高,反应速度极快,聚合反应和产品质量都不易控制。在对阳离子活性聚合的深入研究中,人们发现许多所谓的阳离子活性聚合并非真正意义上的活性聚合。聚合过程中的链转移反应和链终止反应并没有完全消除,只是在某种程度上被掩盖了,因此表现为活性聚合的特征。因此这些聚合过程可成为表观活性聚合。20世纪80年代,Kennendy和Sawamoto等经过长期研究提出可控活性阳离子聚合概念。所谓可控阳离子聚合,即指阳离子聚合的链引发,链增长,链终止和转移均可控制。主要是通过改进主引发剂和共引发剂体系,添加络合剂,引入亲核试剂,或调整溶剂等来降低增长碳阳离子的活性,即碳正离子的稳定性,抑制转移终止,使各基元反应均得到控制,从而可合成出预定结构,分子参数和性能的聚合物。10采用特定的引发剂体系作为引发转移剂(inifer),该引发体系既具有链引发又具有链转移作用。它可以反复单体聚合和定向链转移。由此得到聚合物的一端为主引发剂碎片,可以是设定的官能团,而增长链端又是和主引发剂相似的活性卤化物,使动力学链保持活性。这样聚合物的首末端均得到控制。控制链引发12控制链增长可以实现产物相对分子质量,相对分子质量分布乃至链结构的控制。要控制链增长,首先要使增长的碳正离子稳定,即降低活性。由于同离子效应而抑制了增长末端的解离,使非活性末端变为活性末端,稳定了苯乙烯的碳阳离子,实现了其活性聚合

控制链增长1415是最有效,最易控制质子转移的方法。

1.添加质子捕捉剂控制链转移和链终止162.添加亲核试剂通过上述方法可合成出多种具有末端官能团的聚乙烯基醚,最终得到的聚合物一般都具有分子量分布较窄、可控的反应历程以及近乎完全的官能化、高转化率等特征.17

新引发体系、新单体不断开发,成就瞩目。活性阳离子聚合的成功开发,使得利用阳离子聚合进行高分子精细合成、获得新聚合物,如含末端功能基聚合物及嵌段共聚物等成为可能,有关研究甚为活跃。与其它方法相比,利用活性阳离子聚合合成嵌段共聚物的优点在于它的高嵌段效率(即无均聚物生成),并能容易地控制链段长度与聚合产物的分子量分布。18A单体在活性阳离子聚合条件下被引发聚合,形成活的聚合物,再引发B单体,即可形成A-B二元嵌段共聚物:异丁烯/苯乙烯(或其衍生物)二元嵌段共聚物乙烯基醚类二元嵌段共聚物AB二元嵌段共聚物

20在顺序活性阳离子聚合合成嵌段共聚物时,若使用双官能团引发剂,即可获得ABA三元嵌段共聚物Kennedy等人用单体顺序加入法合成了中间段为橡胶态的聚异丁烯,两端为玻璃态的聚苯乙烯热塑性弹性体聚(苯乙烯2-2异丁烯2-2苯乙烯)三元嵌段共聚物。ABA三元嵌段共聚物

21ShokyokuKanaoka等人设计用HI/ZnI2为催化剂,通过活性阳离子聚合反应,合成一系列星形聚合物。星形嵌段共聚物这些聚合物的重要特征不仅在于它们独特的空间形状,而且在于放置或包埋于特定或预先决定的分子的位置的官能团。另一个特征就是大部分这些多臂共聚物是两亲的,即包含疏水和亲水部分。因为它们的多分枝结构,星形共聚物比相应的相同分子量的线性聚合物在尺寸上更为紧密。23

假如星形聚合物具有极性官能团,这种分子的紧密和球形结构可能导致官能团的更高堆积和因此产生不同于相应线性聚合物的新颖功能。24第二章功能高分子的制备方法功能高分子材料的制备是通过化学或者物理的方法,按照材料的设计要求将某些带有特殊结构和功能基团的化合物高分子化,或者将这些小分子化合物与高分子骨架相结合,从而实现预定的性能和功能。目前主要有以下四种类型:①功能性小分子的高分子化;②已有高分子材料的功能化;③多功能材料的复合;④已有功能高分子的功能扩展。26第二章功能高分子的制备方法2.3.1功能性小分子的高分子化

许多功能高分子材料是从相应的功能小分子化合物发展而来的,这些已知功能的小分子化合物一般已经具备了我们所需要的部分主要功能,但是从实际使用角度来讲,可能还存在许多不足,无法满足使用要求。对这些功能性小分子进行高分子化反应,赋予其高分子的功能特点,即有可能开发出新的功能高分子材料。27第二章功能高分子的制备方法几个例子:小分子过氧酸是常用的强氧化剂,在有机合成中是重要的试剂。但是,这种小分子过氧酸的主要缺点在于稳定性不好,容易发生爆炸和失效,不便于储存。反应后产生的羧酸也不容易除掉,经常影响产品的纯度。将其引入高分子骨架后形成的高分子过氧酸,挥发性和溶解性下降,稳定性提高。28第二章功能高分子的制备方法青霉素是一种抗多种病菌的广谱抗菌素,应用十分普遍。它具有易吸收,见效快的特点,但也有排泄快的缺点。利用青霉素结构中的羧基、氨基与高分子反应,可得到疗效长的高分子青霉素。例如将青霉素与乙烯醇-乙烯胺共聚物以酰胺键相结合,得到水溶性的药物高分子,这种高分子青霉素在人体内的停留时间为低分子青霉素的30~40倍。30第二章功能高分子的制备方法

功能性小分子的高分子化可利用聚合反应,如共聚、均聚等;也可将功能性小分子化合物通过化学键连接的化学方法与聚合物骨架连接,将高分子化合物作为载体;甚至可通过物理方法,如共混、吸附、包埋等作用将功能性小分子高分子化。31第二章功能高分子的制备方法(1)带有功能性基团的单体的聚合这种制备方法主要包括下述两个步骤:首先是通过在功能性小分子中引入可聚合基团得到单体,然后进行均聚或共聚反应生成功能聚合物;也可在含有可聚合基团的单体中引入功能性基团得到功能性单体。这些可聚合功能性单体中的可聚合基团一般为双键、羟基、羧基、氨基、环氧基、酰氯基、吡咯基、噻吩基等基团。32第二章功能高分子的制备方法

丙烯酸分子中带有双键,同时又带有活性羧基。经过自由基均聚或共聚,即可形成聚丙烯酸及其共聚物,可以作为弱酸性离子交换树脂、高吸水性树脂等应用。这是带有功能性基团的单体聚合制备功能高分子的简单例子。33第二章功能高分子的制备方法将含有环氧基团的低分子量双酚A型环氧树脂与丙烯酸反应,得到含双键的环氧丙烯酸酯,这种单体在制备功能性粘合剂方面有广泛的应用。34第二章功能高分子的制备方法除了单纯的连锁聚合和逐步聚合之外,采用多种单体进行共聚反应制备功能高分子也是一种常见的方法。特别是当需要控制聚合物中功能基团的分布和密度时,或者需要调节聚合物的物理化学性质时,共聚可能是最行之有效的解决办法。35第二章功能高分子的制备方法(2)带有功能性基团的小分子与高分子骨架的结合这种方法主要是利用化学反应将活性功能基引入聚合物骨架,从而改变聚合物的物理化学性质,赋予其新的功能。通常用于这种功能化反应的高分子材料都是较廉价的通用材料。在选择聚合物母体的时候应考虑许多因素,首先应较容易地接上功能性基团,此外还应考虑价格低廉,来源丰富,具有机械、热、化学稳定性等等。36第二章功能高分子的制备方法

目前常见的品种包括聚苯乙烯、聚氯乙烯、聚乙烯醇、聚(甲基)丙烯酸酯及其共聚物、聚丙烯酰胺、聚环氧氯丙烷及其共聚物、聚乙烯亚胺、纤维素等,其中使用最多的是聚苯乙烯。聚苯乙烯分子中的苯环比较活泼,可以进行一系列的芳香取代反应,如磺化、氯甲基化、卤化、硝化、锂化、烷基化、羧基化、氨基化等等。37第二章功能高分子的制备方法例如,对苯环依次进行硝化和还原反应,可以得到氨基取代聚苯乙烯;经溴化后再与丁基锂反应,可以得到含锂的聚苯乙烯;与氯甲醚反应可以得到聚氯甲基苯乙烯等活性聚合物。

引入了这些活性基团后,聚合物的活性得到增强,在活化位置可以与许多小分子功能性化合物进行反应,从而引入各种功能基团。38第二章功能高分子的制备方法除了聚苯乙烯外,聚氯乙烯、聚乙烯醇、聚环氧氯丙烷、聚酰胺、聚苯醚以及一些无机聚合物等都是常用的高分子骨架。

如硅胶和玻璃珠表面存在大量的硅羟基,这些羟基可以通过与三氯硅烷等试剂反应,直接引入功能基。这类经过功能化的无机聚合物可作为高分子吸附剂,用于各种色谱分析的固定相、高分子试剂和催化剂使用。无机高分子载体的优点在于机械强度高,可以耐受较高压力。39第二章功能高分子的制备方法(3)功能性小分子通过聚合包埋与高分子材料结合该方法是利用生成高分子的束缚作用将功能性小分子以某种形式包埋固定在高分子材料中来制备功能高分子材料。有两种基本方法。

a)在聚合反应之前,向单体溶液中加入小分子功能化合物,在聚合过程中小分子被生成的聚合物所包埋用这种方法得到的功能高分子材料,聚合物骨架与小分子功能化合物之间没有化学键连接,固化作用通过聚合物的包络作用来完成。40第二章功能高分子的制备方法这种方法制备的功能高分子类似于用共混方法制备的高分子材料,但是均匀性更好。此方法的优点是方法简便,功能小分子的性质不受聚合物性质的影响,因此特别适宜酶等对环境敏感材料的固化。缺点是在使用过程中包络的小分子功能化合物容易逐步失去,特别是在溶胀条件下使用,将加快固化酶的失活过程。41第二章功能高分子的制备方法

b)以微胶囊的形式将功能性小分子包埋在高分子材料中微胶囊是一种以高分子为外壳,功能性小分子为核的高分子材料,可通过界面聚合法、原位聚合法、水(油)中相分离法、溶液中干燥法等多种方法制备。42第二章功能高分子的制备方法

高分子微胶囊在高分子药物、固定化酶的制备方面有独到的优势。例如,维生素C在空气中极易被氧化而变黄。采用溶剂蒸发法研制以乙基纤维素、羟丙基甲基纤维素苯二甲酸酯等聚合物为外壳材料的维生素C微胶囊,达到了延缓氧化变黄的效果。将维生素C微胶囊暴露于空气中一个月,外观可保持干燥状态,色泽略黄。这种维生素C微胶囊进入人体后,两小时内可完全溶解释放。43第二章功能高分子的制备方法通过上述聚合法制备功能高分子材料的主要优点是可以使生成的功能高分子功能基分布均匀,聚合物结构可以通过聚合机理预先设计,产物的稳定性较好。其缺点主要包括:在功能性小分子中需要引入可聚合基团,而这种引入常常需要复杂的合成反应;要求在反应中不破坏原有结构和功能;当需要引入的功能基稳定性不好时需要加以保护;有时引入功能基后对单体聚合的活性会有影响。44第二章功能高分子的制备方法2.3.2通过物理方法制备功能高分子

功能高分子材料的第二类制备方法是通过物理方法对已有聚合物进行功能化,赋予这些通用的高分子材料以特定功能,成为功能高分子材料。这种制备方法的好处是可以利用廉价的商品化聚合物,并且通过对高分子材料的选择,使得到的功能高分子材料机械性能比较有保障。45第二章功能高分子的制备方法聚合物的物理功能化方法主要是通过小分子功能化合物与聚合物的共混和复合来实现。聚合物的这种功能化方法可以用于当聚合物或者功能性小分子缺乏反应活性,不能或者不易采用化学方法进行功能化,或者被引入的功能性物质对化学反应过于敏感,不能承受化学反应条件的情况下对其进行功能化。46第二章功能高分子的制备方法比如,某些酶的固化,某些金属和金属氧化物的固化等。与化学法相比,通过与聚合物共混制备功能高分子的主要缺点是共混物不够稳定,在使用条件下(如溶胀、成膜等)功能聚合物容易由于功能性小分子的流失而逐步失去活性。47第二章功能高分子的制备方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论