两立体表面相交课件_第1页
两立体表面相交课件_第2页
两立体表面相交课件_第3页
两立体表面相交课件_第4页
两立体表面相交课件_第5页
已阅读5页,还剩53页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

两立体表面相交两立体表面相交两立体表面相交辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表面上的共有点。★作图步骤:分析两立体表面性质,即两立体的相对位置和相交情况。求相贯线上的特殊点。求相贯线上的一般点。假想用辅助平面截切两立体,分别得出两立体表面的截交线,截交线的交点是相贯线上的点。★选择辅助平面的原则:使辅助平面与两立体表面的截交线的投影是最简单形状(直线或圆)。一般选投影面平行面。两立体表面相交两立体表面相交两立体表面相交辅助平面法:根据三1辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表面上的共有点。★作图步骤:

分析两立体表面性质,即两立体的相对位置和相交情况。

求相贯线上的特殊点。求相贯线上的一般点。假想用辅助平面截切两立体,分别得出两立体表面的截交线,截交线的交点是相贯线上的点。

★选择辅助平面的原则:

使辅助平面与两立体表面的截交线的投影是最简单形状(直线或圆)。一般选投影面平行面。辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表2一、平面立体与平面立体相交

两平面立体的相贯线在一般情况下是一条封闭的折线

由于两立体的相对位置不同,相交折线可能由一个或几个部分的交线组成。折线的各个顶点是一个平面立体的棱与另一个平面立体的交点,折线的各段是两平面立体各侧面的交线。ACDBa`(e`)b`(f`)d`(g`)c`a(c`)bfegda``e``c``f``(g``)b``(d``)一、平面立体与平面立体相交

两平面立体的相贯线在一3二、平面立体与曲面立体相交

平面立体与曲面立体的相贯线,一般是由若干段平面曲线或直线所组成的空间封闭曲线。ACDEa``(b``)e``(f``)c``(d``)c`(e`)a`d`(f`)b`acebdf相贯线投影二、平面立体与曲面立体相交

平面立体与曲面4圆柱相贯线

圆柱和圆柱相交时,如果它们的轴线垂直相交,称之为正交。一般情况下,正交时相贯线为空间曲线,且有两个对称面,相贯线在两个柱面反映圆的视图上的投影为圆和圆弧,相贯线在两个柱面不反映圆的视图上的投影为曲线,曲线的求法可采用表面取点法。三、曲面立体与曲面立体相交

两曲面立体相贯,其相贯线一般为光滑的封闭空间曲线。相贯线上的点,是两曲面立体表面上的共有点。圆柱相贯线圆柱和圆柱相交时,如果它们的轴线垂直相交,称之51、两圆柱相交相交两回转体的相互位置不同可分为正交、偏交、斜交。相贯线投影相贯线投影分析:两圆柱体轴线垂直相交,其轴线分别为铅垂线和侧垂线,因此小圆柱的水平投影和大圆柱的侧面投影都具有积聚性。相贯线的水平投影积矛在圆周上,侧面投影积聚于圆周的一部分。作图:求特殊点:a'、b'就是两圆柱表面共有点的正面投影,也是相贯线的最高点、最左点、最右点。从侧面投影轮廓线的交点求得相贯线最前点、最后点的侧面投影c"、d",由从属关系求出其余两面投影。求一般点:作辅助正平面,与两圆柱的交线均为矩形,其侧面投影1、2和水平面投影1、2分别在圆周与平面投影的交点上。a'•b'•a"b"•a•b••c"d"••c'(d')•cd•1••21"(2")••1'•2'例1、如图示,求两圆柱正交的相贯线。相贯线投影相贯线投影分析:两圆柱体轴线垂直相交,其轴线分别为6完成后的投影图完成后的投影图7例2、已知一圆柱体上有一圆柱孔,如图所示,求相贯线。a'•b'

•a••ba"(b")

••c"d"••c'(d')•cd•1••21"(2")••1'•2'例2、已知一圆柱体上有一圆柱孔,如图所示,求相贯线。a'•8完成后的相贯线投影图完成后的相贯线投影图9内、外圆柱面相交内、外圆柱面相交10内、外圆柱面相交【分析】外、内圆柱面相交,内、内圆柱面相交时,相贯线的形状和外圆柱面与外圆柱面相交时相贯线的形状相同,画法也完全一样。当两个柱面的直径相差交大时,可用圆弧代替曲线,圆弧的半径等于大圆柱面的半径。内、外圆柱面相交【分析】外、内圆柱面相交,内、内圆柱面相交时11内圆柱面和内圆柱面相交内圆柱面和内圆柱面相交12内圆柱面和内圆柱面相交【分析】内圆柱面和内圆柱面相贯时,若两孔的直径相等,产生的相贯线的空间形状也为椭圆或椭圆弧,在柱面不反映圆的视图上的投影也积聚为直线,只是不可见,应画成虚线。圆孔和圆孔相贯时,要特别注意内孔的转向轮廓线,在相贯区域,孔的转向轮廓线应断开。内圆柱面和内圆柱面相交【分析】内圆柱面和内圆柱面相贯时,若两13常见错误画法常见错误画法14圆柱相贯线圆柱相贯线152)、两圆柱体直径相等且轴线相交相贯线为两个相同的椭圆,椭圆平面垂直于两轴线所决定的平面。动画2)、两圆柱体直径相等且轴线相交相贯线为两个相同动画16直径相等的两个柱面相交直径相等的两个柱面相交17例:如图示,两轴相交的圆柱孔,作出其相贯线。例:如图示,两轴相交的圆柱孔,作出其相贯线。18两立体表面相交课件19两立体表面相交课件202、圆柱与圆锥相交例:求圆柱和圆锥相贯线的正面和侧面投影。分析:圆柱与圆锥的轴线相互垂直,圆柱的轴线是侧垂线,圆锥的轴线是铅垂线。相贯线的侧面投影积聚在圆柱侧面投影的圆周上。用辅助平面法作图。作图:求特殊点A、B是最高点和最低点;过圆柱的最前、最后转向轮廓线作辅助水平面,可求得相贯线最前、最后点的投影。a'•

•b'a"

••a

•b"b•d

•cc'd'

•c"d"•求一般点作辅助水平面。•12

•1"2"•1'2'•

•3"4"

•3•4

•3'4'连相贯线,判别可见性。动画2、圆柱与圆锥相交分析:圆柱与圆锥的轴线相互垂直,圆柱的轴线21完成后的相贯线三视图完成后的相贯线三视图22

•3"

4"•3、圆柱与球相交例:求圆柱与球偏交相贯线的正面和侧面投影。分析:圆柱轴线不能过球心,因此圆柱与球是偏交。圆柱的轴线是铅垂线,则相贯线的水平投影必积聚在圆柱水平投影的圆周上。求特殊点由于圆柱和球下面投影的转向轮廓线在同一平面上,交点a'b'是最高和最低点的正面投影。作辅助侧平面求出最前、最后点的投影。a'•b'•a•b•

•a"

•b"d•

•cd"•c'd'•求一般点作辅助水平面,与圆柱交线的水平投影都积聚在圆柱水平投影的圆周上,与球交线的水平投影为不同直径的圆,两个圆的交点为相贯线上的一般点。1•2

••1'2'

•1"2"

•34••

3'4'连相贯线判别可见性。

•c"•3"4"3、圆柱与球相交分析:圆柱轴线不能过球心,求特23完成后的相贯线投影图完成后的相贯线投影图24例8辅助平面法求锥面和球面的交线【形体分析】锥面和球面相贯时,因锥面和球面没有积聚性,所以,相贯线的三个投影均不知道,为求出相贯线的三个投影,必须采用辅助平面法。圆锥的轴线在部分球体的前后对称面上,且垂直与H面,所以,相贯线关于过球心的正平面对称,相贯线的V面投影为曲线段,W面和H面的为闭合曲线。相贯线上的特殊点为锥面对V和W面的转向轮廓线与球面的交点,共4个点。求V面转向轮廓线上的点可用过锥顶的正平面作辅助平面,求W面转向轮廓线上的点可用过锥顶的侧平面作辅助平面,求一般点用水平面作辅助平面。动画例8辅助平面法求锥面和球面的交线【形体分析】锥面和球面相贯25辅助平面法求锥面和球面的交线辅助平面法求锥面和球面的交线264、相贯线的特殊情况两回转体共轴线相交:两回转体有一个公共轴线相交时,它们的相贯线都是平面曲线——圆。圆柱与圆锥共轴圆锥与圆球共轴圆柱与球共轴4、相贯线的特殊情况圆柱与圆锥共轴圆锥与圆球共轴圆柱与球共轴27特殊情况下,相贯线为平面曲线或直线.相贯线为圆相贯线为直线特殊情况下,相贯线为平面曲线或直线.相贯线为圆相贯线为直线28汇报结束谢谢大家!请各位批评指正汇报结束谢谢大家!请各位批评指正29两立体表面相交两立体表面相交两立体表面相交辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表面上的共有点。★作图步骤:分析两立体表面性质,即两立体的相对位置和相交情况。求相贯线上的特殊点。求相贯线上的一般点。假想用辅助平面截切两立体,分别得出两立体表面的截交线,截交线的交点是相贯线上的点。★选择辅助平面的原则:使辅助平面与两立体表面的截交线的投影是最简单形状(直线或圆)。一般选投影面平行面。两立体表面相交两立体表面相交两立体表面相交辅助平面法:根据三30辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表面上的共有点。★作图步骤:

分析两立体表面性质,即两立体的相对位置和相交情况。

求相贯线上的特殊点。求相贯线上的一般点。假想用辅助平面截切两立体,分别得出两立体表面的截交线,截交线的交点是相贯线上的点。

★选择辅助平面的原则:

使辅助平面与两立体表面的截交线的投影是最简单形状(直线或圆)。一般选投影面平行面。辅助平面法:根据三面共点原理,利用辅助平面求出两回转体表31一、平面立体与平面立体相交

两平面立体的相贯线在一般情况下是一条封闭的折线

由于两立体的相对位置不同,相交折线可能由一个或几个部分的交线组成。折线的各个顶点是一个平面立体的棱与另一个平面立体的交点,折线的各段是两平面立体各侧面的交线。ACDBa`(e`)b`(f`)d`(g`)c`a(c`)bfegda``e``c``f``(g``)b``(d``)一、平面立体与平面立体相交

两平面立体的相贯线在一32二、平面立体与曲面立体相交

平面立体与曲面立体的相贯线,一般是由若干段平面曲线或直线所组成的空间封闭曲线。ACDEa``(b``)e``(f``)c``(d``)c`(e`)a`d`(f`)b`acebdf相贯线投影二、平面立体与曲面立体相交

平面立体与曲面33圆柱相贯线

圆柱和圆柱相交时,如果它们的轴线垂直相交,称之为正交。一般情况下,正交时相贯线为空间曲线,且有两个对称面,相贯线在两个柱面反映圆的视图上的投影为圆和圆弧,相贯线在两个柱面不反映圆的视图上的投影为曲线,曲线的求法可采用表面取点法。三、曲面立体与曲面立体相交

两曲面立体相贯,其相贯线一般为光滑的封闭空间曲线。相贯线上的点,是两曲面立体表面上的共有点。圆柱相贯线圆柱和圆柱相交时,如果它们的轴线垂直相交,称之341、两圆柱相交相交两回转体的相互位置不同可分为正交、偏交、斜交。相贯线投影相贯线投影分析:两圆柱体轴线垂直相交,其轴线分别为铅垂线和侧垂线,因此小圆柱的水平投影和大圆柱的侧面投影都具有积聚性。相贯线的水平投影积矛在圆周上,侧面投影积聚于圆周的一部分。作图:求特殊点:a'、b'就是两圆柱表面共有点的正面投影,也是相贯线的最高点、最左点、最右点。从侧面投影轮廓线的交点求得相贯线最前点、最后点的侧面投影c"、d",由从属关系求出其余两面投影。求一般点:作辅助正平面,与两圆柱的交线均为矩形,其侧面投影1、2和水平面投影1、2分别在圆周与平面投影的交点上。a'•b'•a"b"•a•b••c"d"••c'(d')•cd•1••21"(2")••1'•2'例1、如图示,求两圆柱正交的相贯线。相贯线投影相贯线投影分析:两圆柱体轴线垂直相交,其轴线分别为35完成后的投影图完成后的投影图36例2、已知一圆柱体上有一圆柱孔,如图所示,求相贯线。a'•b'

•a••ba"(b")

••c"d"••c'(d')•cd•1••21"(2")••1'•2'例2、已知一圆柱体上有一圆柱孔,如图所示,求相贯线。a'•37完成后的相贯线投影图完成后的相贯线投影图38内、外圆柱面相交内、外圆柱面相交39内、外圆柱面相交【分析】外、内圆柱面相交,内、内圆柱面相交时,相贯线的形状和外圆柱面与外圆柱面相交时相贯线的形状相同,画法也完全一样。当两个柱面的直径相差交大时,可用圆弧代替曲线,圆弧的半径等于大圆柱面的半径。内、外圆柱面相交【分析】外、内圆柱面相交,内、内圆柱面相交时40内圆柱面和内圆柱面相交内圆柱面和内圆柱面相交41内圆柱面和内圆柱面相交【分析】内圆柱面和内圆柱面相贯时,若两孔的直径相等,产生的相贯线的空间形状也为椭圆或椭圆弧,在柱面不反映圆的视图上的投影也积聚为直线,只是不可见,应画成虚线。圆孔和圆孔相贯时,要特别注意内孔的转向轮廓线,在相贯区域,孔的转向轮廓线应断开。内圆柱面和内圆柱面相交【分析】内圆柱面和内圆柱面相贯时,若两42常见错误画法常见错误画法43圆柱相贯线圆柱相贯线442)、两圆柱体直径相等且轴线相交相贯线为两个相同的椭圆,椭圆平面垂直于两轴线所决定的平面。动画2)、两圆柱体直径相等且轴线相交相贯线为两个相同动画45直径相等的两个柱面相交直径相等的两个柱面相交46例:如图示,两轴相交的圆柱孔,作出其相贯线。例:如图示,两轴相交的圆柱孔,作出其相贯线。47两立体表面相交课件48两立体表面相交课件492、圆柱与圆锥相交例:求圆柱和圆锥相贯线的正面和侧面投影。分析:圆柱与圆锥的轴线相互垂直,圆柱的轴线是侧垂线,圆锥的轴线是铅垂线。相贯线的侧面投影积聚在圆柱侧面投影的圆周上。用辅助平面法作图。作图:求特殊点A、B是最高点和最低点;过圆柱的最前、最后转向轮廓线作辅助水平面,可求得相贯线最前、最后点的投影。a'•

•b'a"

••a

•b"b•d

•cc'd'

•c"d"•求一般点作辅助水平面。•12

•1"2"•1'2'•

•3"4"

•3•4

•3'4'连相贯线,判别可见性。动画2、圆柱与圆锥相交分析:圆柱与圆锥的轴线相互垂直,圆柱的轴线50完成后的相贯线三视图完成后的相贯线三视图51

•3"

4"•3、圆柱与球相交例:求圆柱与球偏交相贯线的正面和侧面投影。分析:圆柱轴线不能过球心,因此圆柱与球是偏交。圆柱的轴线是铅垂线,则相贯线的水平投影必积聚在圆柱水平投影的圆周上。求特殊点由于圆柱和球下面投影的转向轮廓线在同一平面上,交点a'b'是最高和最低点的正面投影。作辅助侧平面求出最前、最后点的投影。a'•b'•a•b•

•a"

•b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论