版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《数系的扩充与复数的引入》
复习课欢迎指导苏教版选修2-2第3章《数系的扩充与复数的引入》
1一、本章知识结构虚数的引入复数复数的表示复数的运算代数表示几何表示代数运算几何意义一、本章知识结构虚数的引入复数复数的表示复数的运算代数21、我们为解决负数开方的问题引入虚数单位i,把形如a+bi(a,b∈R)的数叫做复数,数系由实数集扩充到复数集,实现了数系的扩充。结构图简析1、我们为解决负数开方的问题引入虚数单位i,把形如a+bi(3结构图简析2、建立复数的概念之后,我们主要研究了复数的代数形式及其运算,复数的几何表示(复平面上的点、向量),复数运算的几何意义。结构图简析2、建立复数的概念之后,我们主要研究了复数的代数形4本课复习要点:1.复数的有关概念
2.复数的代数运算
3.复数的几何意义
本课复习要点:1.复数的有关概念2.复数的代数运算3.复5问题1
设复数z=lg(m2–2m–2)+(m2+3m+2)i,试求实数m取何值时。(1)z是纯虚数;(2)z是实数;1.复数的有关概念
问题1设复数z=lg(m2–2m–2)+1.复数的有关概念6
复数a+bi(a,b∈R)由两部分组成,实数a与b分别称为复数a+bi的实部与虚部。
当b=0时,a+bi就是实数,当b≠0时,a+bi是虚数,其中a=0且b≠0时称为纯虚数。背景知识
复数a+bi(a,b∈R)由两部分组成,实数a7问题2
设x,y∈R,并且(2x–1)+xi=y–(3–y)i,求x,y。解题总结:复数相等的问题转化求方程组的解的问题一种重要的数学思想—转化思想问题2设x,y∈R,并且解题总结:复数相等的问题转化求8变式练习1.若方程+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.2.已知不等式-(-3m)i<10+(-4m+3)i,试求实数m的值.误点警示:虚数不能比较大小!变式练习1.若方程+(m+2i)x+(2+mi)=092.复数的代数运算问题3
复数等于()A. B.C. D.2.复数的代数运算问题3复数等于()10方法点拨—在掌握复数运算法则的基础上注意以下几点1.的周期性2.3.方法点拨—在掌握复数运算法则的基础上注意以下几点1.11高考链接1.(06年陕西卷)复数等于A.1-iB.1+iC.-1+iD.-1-i2.(05年重庆卷)
A.B. C. D.高考链接1.(06年陕西卷)复数等于2.(012问题4
设z为虚数,且满足
求|z|。解法1
设z=a+bi(a,b∈R且b≠0),问题4设z为虚数,且满足解法1设z=a+bi(a13《数系的扩充与复数的引入》复习课课件14解法2
解法215解题总结解法1入手容易、思路清楚,是我们处理这类问题的常规方法,必须熟练掌握。解法2着眼于整体处理,巧用共轭复数的性质,对解题方法技巧有较高的要求。解题总结解法1入手容易、思路清楚,是我们处理这类问题的常规方16方法与技巧—共轭复数的性质时,z是纯虚数
方法与技巧—共轭复数的性质时,z是纯虚数17问题5
已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围。
3、复数的几何意义问题5已知复数z=(m2+m-6)+(m2+m-2)i在18复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)x轴------实轴y轴------虚轴(数)(形)复平面一一对应yxobaZ(a,b)z=a+bi复数的一个几何意义背景知识复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,19
复数z=a+bi点Z(a,b)向量复数的另一几何表示复数z=a+bi复数的另一几何表示20CxyB
0A问题6
如图,已知复平面内一个平行四边形的三个顶点O,A,B对应的复数分别是0,5+2i,-3+i,求第四个顶点C对应的复数.解法1—向量法解法2—几何法平行四边形对角线互相平分CxyB0A问题6如图,已知复平面内一个平行四边形的三个21知识拓展xy
o不等相等知识拓展xyo不等相等22如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是()A.1B. C.2 D.问题7xyo思想方法—数形结合如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|23方法与技巧掌握一些常见曲线的复数方程,充分运用复数的几何意义解题,就可以快速准确的解答有关问题。方法与技巧掌握一些常见曲线的复数方程,充分运用复数的几何意义24回顾总结1.两个复数相等的充要条件是实现把复数问题转化为实数问题的重要途径,也是我们解决有关的方程、不等式问题的重要依据。2.在熟练进行复数运算的同时,掌握一些运算技巧方法,以求快速准确地解答问题。回顾总结1.两个复数相等的充要条件是实现把复数问题转化为实数253.复数的几何表示建立了复数与平面图形、复数与向量沟通的桥梁,由此我们可以方便地进行数形转换,寻找更为直观、方便的解题方法与途径。回顾总结3.复数的几何表示建立了复数与平面图形、复数与向量沟通的桥梁26作业1.已知z是复数,z+2i、均为实数,且复数(z+ai)z在复平面上对应的点在第一象限,求实数a的取值范围.作业1.已知z是复数,z+2i、均为实272.已知复数z满足,的虚部为2,(1)求z;(2)设,,在复平面对应的点分别为A,B,C,求的面积.2.已知复数z满足,的虚部为2,28《数系的扩充与复数的引入》
复习课欢迎指导苏教版选修2-2第3章《数系的扩充与复数的引入》
29一、本章知识结构虚数的引入复数复数的表示复数的运算代数表示几何表示代数运算几何意义一、本章知识结构虚数的引入复数复数的表示复数的运算代数301、我们为解决负数开方的问题引入虚数单位i,把形如a+bi(a,b∈R)的数叫做复数,数系由实数集扩充到复数集,实现了数系的扩充。结构图简析1、我们为解决负数开方的问题引入虚数单位i,把形如a+bi(31结构图简析2、建立复数的概念之后,我们主要研究了复数的代数形式及其运算,复数的几何表示(复平面上的点、向量),复数运算的几何意义。结构图简析2、建立复数的概念之后,我们主要研究了复数的代数形32本课复习要点:1.复数的有关概念
2.复数的代数运算
3.复数的几何意义
本课复习要点:1.复数的有关概念2.复数的代数运算3.复33问题1
设复数z=lg(m2–2m–2)+(m2+3m+2)i,试求实数m取何值时。(1)z是纯虚数;(2)z是实数;1.复数的有关概念
问题1设复数z=lg(m2–2m–2)+1.复数的有关概念34
复数a+bi(a,b∈R)由两部分组成,实数a与b分别称为复数a+bi的实部与虚部。
当b=0时,a+bi就是实数,当b≠0时,a+bi是虚数,其中a=0且b≠0时称为纯虚数。背景知识
复数a+bi(a,b∈R)由两部分组成,实数a35问题2
设x,y∈R,并且(2x–1)+xi=y–(3–y)i,求x,y。解题总结:复数相等的问题转化求方程组的解的问题一种重要的数学思想—转化思想问题2设x,y∈R,并且解题总结:复数相等的问题转化求36变式练习1.若方程+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.2.已知不等式-(-3m)i<10+(-4m+3)i,试求实数m的值.误点警示:虚数不能比较大小!变式练习1.若方程+(m+2i)x+(2+mi)=0372.复数的代数运算问题3
复数等于()A. B.C. D.2.复数的代数运算问题3复数等于()38方法点拨—在掌握复数运算法则的基础上注意以下几点1.的周期性2.3.方法点拨—在掌握复数运算法则的基础上注意以下几点1.39高考链接1.(06年陕西卷)复数等于A.1-iB.1+iC.-1+iD.-1-i2.(05年重庆卷)
A.B. C. D.高考链接1.(06年陕西卷)复数等于2.(040问题4
设z为虚数,且满足
求|z|。解法1
设z=a+bi(a,b∈R且b≠0),问题4设z为虚数,且满足解法1设z=a+bi(a41《数系的扩充与复数的引入》复习课课件42解法2
解法243解题总结解法1入手容易、思路清楚,是我们处理这类问题的常规方法,必须熟练掌握。解法2着眼于整体处理,巧用共轭复数的性质,对解题方法技巧有较高的要求。解题总结解法1入手容易、思路清楚,是我们处理这类问题的常规方44方法与技巧—共轭复数的性质时,z是纯虚数
方法与技巧—共轭复数的性质时,z是纯虚数45问题5
已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m的取值范围。
3、复数的几何意义问题5已知复数z=(m2+m-6)+(m2+m-2)i在46复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,b)x轴------实轴y轴------虚轴(数)(形)复平面一一对应yxobaZ(a,b)z=a+bi复数的一个几何意义背景知识复数z=a+bi有序实数对(a,b)直角坐标系中的点Z(a,47
复数z=a+bi点Z(a,b)向量复数的另一几何表示复数z=a+bi复数的另一几何表示48CxyB
0A问题6
如图,已知复平面内一个平行四边形的三个顶点O,A,B对应的复数分别是0,5+2i,-3+i,求第四个顶点C对应的复数.解法1—向量法解法2—几何法平行四边形对角线互相平分CxyB0A问题6如图,已知复平面内一个平行四边形的三个49知识拓展xy
o不等相等知识拓展xyo不等相等50如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是()A.1B. C.2 D.问题7xyo思想方法—数形结合如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|51方法与技巧掌握一些常见曲线的复数方程,充分运用复数的几何意义解题,就可以快速准确的解答有关问题。方法与技巧掌握一些常见曲线的复数方程,充分运用复数的几何意义52回顾总结1.两个复数相等的充要条件是实现把复数问题转化为实数问题的重要途径,也是我们解决有关的方程、不等式问题的重要依据。2.在熟练进行复数运算的同时,掌握一些运算技巧方法,以求快速准确地解答问题。回顾总结1.两个复数相等的充要条件是实现把复数问题转化为实数533.复数的几何表示建立
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60335-2-15:2024 EXV EN Household and similar electrical appliances - Safety - Part 2-15: Particular requirements for appliances for heating liquids
- 淮阴师范学院《田径B(2)》2021-2022学年第一学期期末试卷
- 淮阴师范学院《影视特效制作》2021-2022学年第一学期期末试卷
- 淮阴师范学院《小学语文文本解读》2022-2023学年第一学期期末试卷
- 淮阴师范学院《广播电视采访与写作》2022-2023学年第一学期期末试卷
- 淮阴工学院《配送中心规划与设计》2022-2023学年第一学期期末试卷
- 淮阴师范学院《安装工程技术与识图》2022-2023学年第一学期期末试卷
- 淮阴工学院《园艺产品与人体健康》2022-2023学年第一学期期末试卷
- DB6111∕T+217-2024+火龙果保鲜技术规程
- 水利工程中的水土保持与林业经济考核试卷
- 配电室运行维护投标方案(技术标)
- 初中化学试卷讲评课件
- 2024届东北师大附中重庆一中等六校化学高一第一学期期中检测试题含解析
- (完整版)医疗器械网络交易服务第三方平台质量管理文件
- 13G322-1~4《钢筋混凝土过梁(2013年合订本)》
- 关于幼儿园小班反邪教安全教案
- 某单位物业服务项目投标方案
- 35KV场内集电线路工程强条执行检查表
- 【多旋翼无人机的组装与调试5600字(论文)】
- 减速机知识及维修课件
- 内部项目跟投协议书(正)
评论
0/150
提交评论