2023届广东省东莞外国语学校高一上数学期末考试模拟试题含解析_第1页
2023届广东省东莞外国语学校高一上数学期末考试模拟试题含解析_第2页
2023届广东省东莞外国语学校高一上数学期末考试模拟试题含解析_第3页
2023届广东省东莞外国语学校高一上数学期末考试模拟试题含解析_第4页
2023届广东省东莞外国语学校高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列所给出的函数中,是幂函数的是A. B.C. D.2.电影《长津湖》中,炮兵雷公牺牲的一幕看哭全网,他的原型是济南英雄孔庆三.因为前沿观察所距敌方阵地较远,需要派出侦察兵利用观测仪器标定目标,再经过测量和计算指挥火炮实施射击.为了提高测量和计算的精度,军事上通常使用密位制来度量角度,将一个圆周分为6000等份,每一等份的弧所对的圆心角叫做1密位.已知我方迫击炮连在占领阵地后,测得敌人两地堡之间的距离是54米,两地堡到我方迫击炮阵地的距离均是1800米,则我炮兵战士在摧毁敌方一个地堡后,为了快速准确地摧毁敌方另一个地堡,需要立即将迫击炮转动的角度()注:(ⅰ)当扇形的圆心角小于200密位时,扇形的弦长和弧长近似相等;(ⅱ)取等于3进行计算A.30密位 B.60密位C.90密位 D.180密位3.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增4.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.25.下列关于函数的说法不正确的是()A.在区间上单调递增B.最小正周期是2C.图象关于直线轴对称D.图象关于点中心对称6.在同一直角坐标系中,函数和(且)的图像可能是()A. B.C. D.7.已知点是角α的终边与单位圆的交点,则()A. B.C. D.8.已知实数,满足,则函数零点所在区间是()A. B.C. D.9.如图,在菱形ABCD中,下列式子成立的是A. B.C. D.10.逻辑斯蒂函数fx=11+eA.函数fx的图象关于点0,fB.函数fx的值域为(0,1C.不等式fx>D.存在实数a,使得关于x的方程fx二、填空题:本大题共6小题,每小题5分,共30分。11.经过两条直线和的交点,且垂直于直线的直线方程为__________12.设函数和函数,若对任意都有使得,则实数a的取值范围为______13.若,则实数____________.14.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)15.若关于的不等式的解集为,则实数__________16.函数在上存在零点,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.主动降噪耳机工作的原理是:先通过微型麦克风采集周国的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的声波来抵消噪声(如图所示).已知某噪声的声波曲线,其中的振幅为2,且经过点(1,-2)(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)证明:为定值18.(1)已知,求的值;(2)已知,求的值;19.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值20.如图,在边长为2的正方形ABCD中,E,F分别是边AB,BC的中点,用向量的方法(用其他方法解答正确同等给分)证明:21.已知角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边过点(1)求值(2)已知,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据幂函数的定义,直接判定选项的正误,推出正确结论【详解】幂函数的定义规定;y=xa(a为常数)为幂函数,所以选项中A,C,D不正确;B正确;故选B【点睛】本题考查幂函数的定义,考查判断推理能力,基本知识掌握情况,是基础题2、A【解析】求出1密位对应的弧度,进而求出转过的密位.【详解】有题意得:1密位=,因为圆心角小于200密位,扇形的弦长和弧长近似相等,所以,因为,所以迫击炮转动的角度为30密位.故选:A3、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D4、C【解析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C5、D【解析】结合三角函数的性质,利用整体代换思想依次讨论各选项即可得答案.【详解】当时,,此时函数为增函数,所以函数在区间上单调递增,A选项正确;由函数周期公式,B选项正确;当时,,由于是的对称轴,故直线是函数的对称轴,C选项正确.当时,,由于是的对称轴,故不是函数的中心对称,D选项错误;故选:D.6、B【解析】利用函数的奇偶性及对数函数的图象的性质可得.【详解】由函数,可知函数为偶函数,函数图象关于轴对称,可排除选项AC,又的图象过点,可排除选项D.故选:B.7、B【解析】根据余弦函数的定义直接进行求解即可.【详解】因为点是角α的终边与单位圆的交点,所以,故选:B8、B【解析】首先根据已知条件求出,的值并判断它们的范围,进而得出的单调性,然后利用零点存在的基本定理即可求解.【详解】∵,,∴,,∴,且为增函数,故最多只能有一个零点,∵,,∴,∴在内存在唯一的零点.故选:B.9、D【解析】解:利用菱形的性质可知,第一问中方向不同,错误;选项B中显然不共线,因此错误.,因此C不对;只有D正确10、D【解析】A选项,代入f-x,计算fx+f-x=1和f0=12,可得对称性;B选项,由【详解】解:对于A:fx=11+e-x=ex1+ex,f-x对于B:fx=11+e-x,易知e-x>0,所以1+e对于C:由fx=11+e-x容易判断,函数fx在R上单调递增,且f对于D:因为函数fx在R上单调递增,所以方程fx故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】联立方程组求得交点的坐标为,根据题意求得所求直线的斜率为,结合点斜式可得所求直线的方程.【详解】联立方程组,得交点,因为所求直线垂直于直线,故所求直线的斜率,由点斜式得所求直线方程为,即.故答案为:.12、【解析】先根据的单调性求出的值域A,分类讨论求得的值域B,再将条件转化为A,进行判断求解即可【详解】是上的递减函数,∴的值域为,令A=,令的值域为B,因为对任意都有使得,则有A,而,当a=0时,不满足A;当a>0时,,∴解得;当a<0时,,∴不满足条件A,综上得.故答案为.【点睛】本题考查了函数的值域及单调性的应用,关键是将条件转化为两个函数值域的关系,运用了分类讨论的数学思想,属于中档题13、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.14、【解析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.15、【解析】先由不等式的解得到对应方程的根,再利用韦达定理,结合解得参数a即可.【详解】关于的不等式的解集为,则方程的两根为,则,则由,得,即,故.故答案为:.16、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)首先根据振幅为2求出A,将点(1,-2)代入解析式即可解得;(2)由(1),结合诱导公式和两角和差的余弦公式化简即可证明.【详解】(1)∵振幅为2,A>0,∴A=2,,将点(1,-2)代入得:,∵,∴,∴,∴,易知与关于x轴对称,所以.(2)由(1).即定值为0.18、(1);(2)3.【解析】(1)根据指数的运算性质可得,再由与的关系求值即可.(2)由对数的运算性质可得,再由正余弦的齐次计算求目标式的值.【详解】(1)由,可得:,∴,解得.(2)由,可得:,即,∴.19、(1);(2).【解析】(1)由二次函数可设,再利用进行化简分析即可.(2)由(1)可知,对称轴为,通过讨论的范围,根据函数的单调性,求出函数的最小值.【详解】(1)由二次函数可设,因为,故,即,即,故,即,故;(2)函数的对称轴为,则当,即时,在单调递减,;当,即时,;当时,在单调递增,,.【点睛】本题主要考查二次函数的解析式求解以及二次函数最值的问题等,属于中等题型.20、证明见解析【解析】建立直角坐标系,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论