




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FormversusFunction:WalkingtheLineAmrishDeshmukh,NikoStahl,TarunChitraNovember18,2008TheArtsquadisaspacethatissubjecttoseveralcompetinginterests.Itsdesignisexpectedtooffertheopportunityforanindividualtomoveconvenientlyfromoneendtoanother,tokeepgeneralmaintenancecostsfeasibleandtoallowforactivitiesrangingfromlecturestosnowballfights.Thispaperproposesamathematicalmodel,whichprovidesawayofintelligentlydesigningthepathnetworkofthequad.Thecenterpieceofourmodelisacostfunction,whichevaluatesthefeasibilityofagivenpathconfiguration.Toexplorethesetoffeasiblepathconfigurationwewroteanalgorithmthatrandomlygeneratessamplesofthisset.WethenimprovedonthissearchbyconstructinganoptimizationalgorithminspiredbyMarkovchainMonteCarlomethods.Webelievethisimprovedsearchhasfoundalocalminimumpathconfiguration,asitappearsstableunderperturbation.IProblemStatement4IITheArtsQuadrangleasaGraph4IIITheLengthofaPath6IVUnofficialPathInducedbyHumanBehavior7VTheCostFunction8VIAssumptions:9VIIAlgorithmsforFindingOptimalPathConfigurations9VIIIResults:10IXRecommendedSolution11XFutureWork15XIBibliography16PartIProblemStatementThetaskistoredesigntheArtsquadwalkwaysusingamathematicalmodelthatwillhelpusdetermineapreferreddesign.Beyondthegeneralfactthatminimizingthetotallengthofthepathsandmaximizingtheareasofcontiguouslawnsarepreferable,weareaskedtoconsiderthefollowingcriteria:•Pathmaintenancecosts•Landscapingcosts•Pedestriantrafficandbehavior•Thecreationofunofficialpathsanditsimpactonthelawn•ThegeneralappealofthequadToimplementthesecriteriainourmodel,weareprovidedwiththefollowingprinciples:•Thepathmaintenancecostisproportionatetothetotalpathlength.•Thelandscapingcostdependsonthenumberofcontiguouslawns,thecreationofunofficialpaths(asaresultofpedestriansleavingthepavedpathstoarriveattheirdestinationmorequicklyandthegeometryofcontiguouslawn.•Ifthepathbetweentwopointsis15%longerthanthestraightlineconnectingthepoints,apedestrianwillleavethepathandcutacrossthequad.•Anaveragepedestrianmightleavethepathifitimpliessavingmorethan10%ofthetotallengththepath.PartIITheArtsQuadrangleasaGraphGraphtheoryhasbeenanimportanttoolinexploringproblemswhichrangefromdeterminingtheneuralnetworkofnematodeC.eleganstofindingthecauseoffailureinelectricalpowergrids1.Byframingourwalkwaydesignprobleminthelanguageofgraphs,wecanreadilyextractthekeyrelationshipsbetweenstructureandfunction.WedescribetheArtsquadrangle(herebyreferredtoastheArtsquadorsimplyquadasagraphof10nodes,whichrepresentthemostcommonpointsofentryandexittothequad(seefigure1below.1See[1]Figure1:CornellArtsQuadLetthesetofnodesbeA={x|x∈{1,2,...,10}}.Nowwecandefineapathtobeanorderedpair(a,bandthesetofallpathsastherelationR={(a,b|a,b∈A,a=b}(1sinceeverypairofdistinctnodeswilldefinealinesegment,orone-waypath,intheplane.ThenthesetofallpossibleconfigurationsofpathsisgivenbythepowersetP(R.Thissethas290elements(thecardinalityofapowersetofasetwith90elementsThispresentsanoverwhelmingsetofpossibilities,butfortunatelytherearethreeconstraints,whichweimposedtomakeoursetlessunwieldy.Wewillonlymodel:1.Non-directedgraph:Currentlythespace(1,3isdistinctfromthepath(3,1.Wefindthistobeunreasonableaspedestrianpathsareveryrarely“one-way”2.Connectedgraph:Aestheticallyandfunctionallyitmakeslittlesensetoallowabuildingtobesurroundedcompletelybygrass.Furthermore,wepickedthetennodesbecauseweconsideredthemtobeessentialcirculationpointsofthequad.Therefore,havingoneofthemdisconnectedfromthenetworkwouldbeunreasonable3.Thisisagainchoseninlinewithouropinionsonaestheticsandutility.Whilepedestriansarelikelytoacceptlongerdistancesthanastraightlinetoremainontheofficialpath,itseemsunlikelythatapersongoingfromAtoBwillabidewithapaththatstrictlyincreasesthedistancetoBbeforeallowingthepedestriantoactuallyapproachB(seefigure2below.Figure2:Inthefirstgraph,weseethattravellingfrom(0,1→(1,0neverincreasesthedistancefrom(1,0,whereasinthesecondgraph,goingfrom(0,0→(1,0incursthiscostOncewehaveattainedpotentiallyoptimalconfigurationsthatsatisfythesethreeconstraints,wewillremovetheconstraintsandshowthatthereislittleornoimprovementtobegainedbyrelaxingthem.Noticethatthethirdconditionimpliesthesecondinthegeometrythatwehavechosen,whereallnodesareplacedontheperimeter.However,inageometrywherenodesintheinteriorareconsideredaswell,thisimplicationdoesnothold.Therefore,wehavemadebothconstraintsexplicit.IfwetakeB⊆P(Rtobethesetofallpossibleconfigurationsofpaths,whichdonotsatisfy(1−(3,ourmodelconsidersthesetP(R\B.Havingthusdefinethesetofpossibleconfigurationsofpathswecanusesoursite-specificgeometricinformationtodescribetheimportantfeaturesofagivenconfigurationofpaths.PartIIITheLengthofaPathAgivenconfigurationofpaths(a∈P(R\Bandthelocationofitsnodes(seeTable1belowdefinesasetoflinesegmentsrepresentingpathsintheplane.Node12345678910Location(0,0(0,3(0,9(0,15(0,18(5.6,18(7,18(7,14(7,6(7,0SWMorrillHallMcGrawHallWhiteHallTjadenHallSibleyHallNELincolnHallGSHallSEEmployingsimplegeometrywecandetermineli,thelengthoftheithpathasafunctionoftheithpathpiwhichisgivenbythecoordinatesofthetwonodesitconnects.Thereforewehave:li=ip2i=||p||2(2a={p1,p2,...,pn}pi=(a,b(3wherea,barethenumbersofnodeswithcoordinates(a1,a2,(b1,b2respectively.Thetotallengthofthepathsisthengivenbysummationoveri:L=ili(4Bydefinition,wecandefineametriconthegraphby:||L||=infiL=infiili(5whereListheminimallengthofallthepaths.PartIVUnofficialPathInducedbyHumanBehaviorFunctionalityisakeyaspectofanydesign.Tomeasurethefunctionalityofapathconfiguration,wehavetobeabletomodelthebehaviorofthepeoplewhowilluseit.Afailuretobefunctionalresultsinbothawasteofasphaltandatraffic-damagedlawn.Theproblemstatementprovidesuswiththefollowinginformationtomodelhumanbehavior:•Ifthepathbetweentwopointsis15%longerthanthestraightlineconnectingthepoints,apedestrianwillleavethepathandcutacrossthequad•Anaveragepedestrianmightleavethepathifitimpliessavingmorethan10%ofthetotallengthofthepathSoifagivenconfigurationofpathsistoosparse2,peoplewillchoosetosavetimeandcutacrossthelawn.Noticethatthehumanbehaviorwearemodelingconsidersthequadasaspacethatistobetraversedasquicklyaspossible.Inotherwords,weareignoringtrafficfrompeoplewhogotopointsonthequad,suchassunbathersorfrisbeeplayers.Thereforewecangeneralizeourassumptionsofhumanbehaviortobethefollowing:•Individualsviewtimespentwalkingasadetrimenttotheirutility.Theytrytocrossthequadasquicklyaspossible•Individualsdonotwishtodeviatetoogreatlyfromsociologicalnorms.Therefore,weareabletoassumethattherewillbeacertainpropensitytouseanofficialpatheventhoughthedistanceitentailsislongerthanastraightlinepathtothedestination.Thesecondconditionisdiscussedinmodelsofhumantrailformation3inwhichindividualsdecidehowtochooseapathbasedonthecollectivebehavior.Studentswanttogetwheretheyaregoing,yettheymaytemperthisdesireifitmakesthemthelone-maninthemiddleofthefield.Soanindividual’sbehaviorwillbeafunctionofthepathconfiguration.Weinterpret“might,”asstatedintheinformationgivenintheproblemstatement,asa50%chancethatanindividualwillleavethemapfinally,ifapathcoincideswiththestraightlinebetweentwonodes,noutilitymaximizerwouldhaveincentivetoleavethepath.Wefitthesethreedatapointswithalogisticcurvewhichthendescribesthepropensityofanindividualtocutasafunctionoftherelativecostincurredbystayingonanofficialpath.Theamountofdamagedonetothegrasswillthenbegivenbymultiplyingthispropensitytocutbythelengthofthestraightlinepath.Wedeterminez,therelativeincurredcostofremainingonanofficialpathbycomparingDijkstra’salgorithm4ontwographs:anyconfigurationofpathsbeingconsideredandthepath2Asparsegraphisagraphinwhicheverysubgraphhasanumberofedgesthatisfarlessthanthemaximalnumberofedgesinthegraph,[2]3See[5],[6],[7]4Analgorithmthatsolvesthesingle-sourceshortestpathproblem(see[2],[3].Thevariantthatweusedinparticularis[9]configurationinwhichallnodesareconnectedtoallothernodes,thecompletegraph.Oncezisdeterminedforeverypairofnodes,thelogisticfunctionggivesthepropensityofanindividualtoleavetheofficialpathforeachofthesepairs.ThelengthofcutpathscanagainbeobtainedviaDijkstra’salgorithm.Finallythetotaldamage,Csubcutbypath-desertingtrafficcanbeobtainedbytakingtheproductofthepropensitytocut,g(z,withthelengthofthecutpath,summedoverallpaths.PartVTheCostFunctionWeproceedbyidentifyingthetwomaincostsofaconfigurationofpaths:1.Maintenancecostsforpath2.LandscapingcostsfortreatingunofficialpathsThustheoverallcostofadesignbecomesafunctionofbothformandfunctionality.Ourfirstcostpenalizessimplypavingtheentirequad,whichissuggestedbytheproblemstatement.Thesecondpreventsusfromleavingitasanunadulteratedpasture.ForsimplicitywedefinethecostfunctionC,tobeasimplelinearcombinationofthesetwocosts:C(L,Csubcut=L+kCsubcut(6wherekistherelativeperlengthcostofmaintainingasphalttorevivingtraffickedgrass.ThusgivenaconfigurationofpathsontheArtsquadrangle,wecanevaluateitscost.Wedefineanoptimalconfigurationasonethatwillminimizethecostinadditiontosatisfyingthefollowingconstraints:1.Theconfigurationshouldnotcallforpathswhichintersectatreeorstatue2.Theconfigurationwillnotresultinlawnswithsharpanglesorwildgeometries3.Theconfigurationwillnotmakethequadoverlyfragmented,aswewanttopreventahighnumberofcontiguouslawnsOptimally,theseadditionalconstraintswouldbeimposedonthedomainofourcostfunctionP(A\Bandthusreducethespaceoverwhichwemustsearchforanoptimumsolution.However,webelievethattheseconstraintswillnotsubstantiallyreducethesetofpossiblepathsbecause:•Weareconsideringafinitenumberofpossiblepathsandarenotattemptingtospanthequadwithrandomly-generatedpaths.Ifthepathbetweentwoofourfixednodesintesectswithatree,wecansimplymoveoneofthenodes•Thecompletepathconfigurationdoesnotresultinanoverwhelminggeometryorextremelysharpangles•ThecompletepathconfigurationdoesnotfragmentthequadtoanunreasonableamountThusinordertosavetimerequiredforcomputingthenewdomain,weimposethattheoptimalsolutionwefindmustsatisfytheaboveconstaints,post-processing.Ifitdoesnot,weselectthenextbestsolutioninoursetofoptimumsolutions5thatsatisfiestheconstraints.5Sincewearerandomizingthepathswearetaking,wecanalwaysmakethesolutionsetequaltotheoptimalsolution±kσ,whereσisthestandarddeviationoftheprobabilitydistributionweimposeonourMarkovchains.See[3]Itispossiblethatonemaywanttoincludetheseciteriaaspartofthecostfunction.Whileitispossibletodeterminethenumberofcontiguousregionsdeterminedandtheanglesofthoseregions,itisdifficulttosaywhatis“toosharp”or“toofragmented.”Nonetheless,ourmethodislargelycompatiblewithmodifyingthecostfunctionifanobjectivemeasureoftheseconstraintswasknown.Thoughwehavesignificantlyreducedourdomainofconsideration,itisstillquitelarge.Inadditionourcostfunctionisexpensivetoevaluateasitisanonlinearfunctionof90variables(10nodes·10nodes=100path-10(pathstoself=90.AsaresultwecannothopetoperformanoptimizationanalyticallyorviamethodicallyexploringallofP(R\B.WethereforeturntotwoalternativemethodsoutlineinthesectionVIII.PartVIAssumptions:reasonabledescriptionofthegeneraltraversalsofthequadfortheoptimumtopathconfigurations,whichconnectthesetenpoints.strategicallyinfrontoftheentriesofbuildingpositionsandatthecornersofthequad.abidewithapaththatstrictlyincreasesthedistancetoBbeforeallowingthepedestriantoactuallyapproachBincludetheperimeteroneedgetoanothernodesintheinteriorofthequadcrossthequadproblemstatementisassumedtomeana50%chancethatanindividualwillleavethepathusingtheLogisticfunctiontheIPCCusesimilarinterpretationscombinationofthepathmaintenancecostandthelandscapemaintenancecostcostfunction.PartVIIAlgorithmsforFindingOptimalPathConfigurationsWeattempttofindouroptimalsolutionviatwomethods:•BruteForceSampling-generated30,000randomconfigurationsfromwhichweselectthelowestcostsolutionastheoptimum.Therandomconfigurationsweregeneratedfromthesetofallpossiblepairsofnodes(i.e.Rusingtherand(functioninMatlab6•APrimitiveVersionofaMarkovChain-MonteCarlo(MCMCmethod6WeacknowledgetheinaccuraciesintherandomnumbergeneratorinMatlab;however,duetotimerestrictionswewereforcedtousethebuilt-inrandomnumbergenerator.Luckily,swappingouttheMatlabrandomnumbergeneratorforanotherrandomnumbergeneratorthatiscodedinMatlabisasimpleexercise–Inspiredbymuchmorecarefulandeffectiveoptimizationmethods,wedevelopedaprim-itiveMCMCmethodwhichmimicsseveralkeyfeaturesofthesealgorithms.Webeginbyrandomlyselectinganinitialconfigurationforthequad’swalkways.Fromthiscurrentstatewerandomlyperturb(removeoraddarandomnumberofedges(between1and5.Thecostofthisnewstateisthenevaluatedandcomparedtothecurrentstate.Ifthenewstateissuperiortothecurrentstate,itreplacesthecurrentstate.Ifitisaninferiorstate,itwillreplacethecurrentstatewitha15%probabilityandisdiscardedotherwise.Again,asinthebruteforcesampling,werestrictoursearchdomaintoP(R\B.PartVIIIResults:Wefind,asexpected,thatourprimitiveMCMCsearchyieldsabetterminimalcostsolutionthanthosefoundinthebruteforceapproach.AlongwiththetwosolutionsobtainedviatheMCMCapproachweconsiderthe10bestsolutionsfromthebruteforcesearch.UsingasimilarprocedureasintheMCMCalgorithm,werandomlyperturbedeachofthesesolutionsbyoneedgemultipletimes.Ifinanysingleperturbtionwefindthatthecostimproves,thenewstateisrecorded.Asexpected,thesolutionsthatwerefoundasaresultofthebruteforcealgorithmwerenotallstableunderperturbation.Fourofthese10solutionswereimprovedandofthesenonehadacostreductiongreaterthan15%.Encouragingly,neitherofthetworesultsobtainedfromtheprimitiveMCMCsearchwereimprovedin1000randomperturbations.Thisindicatesthatthesesolutionsmaybealocalminimum,ifnotaglobalminimumofthecostfunctioninthedomainweconsider(SeeFigure3below.FromthesetwosolutionswechoseonetorecommendbasedonwhichsolutionbestsatisfiedthesubjectiveconstraintsdiscussedonpartII.Intheabsenceofanobjectivewaytoevaluateasolutionbasedonthesecriteriaaspartofthecostfunctionwebelievethatthismethodofdemocraticvotingbytheconcernedpartiesisthemostreasonablealternative.Figure3:12optimalsolutions;thefirst10depictthesolutionsforthebruteforcemethod,whereasthelasttwodepictsolutionsfortheMCMCmethod.Thecostisthetitleofeachgraph.Note:WechosethesecondtolastgraphasouroptimalsolutionPartIXRecommendedSolutionThenetworkofpathsgivenbelowwouldmostlikelyminimizethecostsassociatedwithpathandlawnmaintenance:Figure4:Oursolution,left,andthecurrentArtsquadWealsofind,inlinewithourpredictions,thatthesolutiondoesnotintersectanytreesofstatues.Thisisdepictedbelowinfigure5:Figure5:Ourplaninred,whichdoesnotintersectwithanytreesorstatuesUsingourmodelwecanthendeterminetowhatextentthesepathswillleadtounofficialtrailformation.Wefindthattheseformationsareminimal,andthisisexpressedinthefollowingfigurewhichdisplaysthenewquadaftersignificantuse.Figure6:Ouroptimalsolution,withthe(estimatedunofficial,treadedpathsdrawnin.Theiropacityisproportionaltothepropensitytocut,asdefinedinsection2Ourfinalreccomendationisfortheplacementofspecialhardierseeds.Wereccomendthattheseseedsbeusedinthehighlightedregionswhereunofficialpathwaysaremostdetrimentalandwherelargecontinuousareaswillattractfrisbeeplayersandthelike.Thisisportrayedbelow:Figure7:OurrecommendationforwherethemoreexpensiveseedingshouldbeplacedPartXFutureWorkTheflexibilityofourapproachgivesrisetoacopiousnumberoffuturedirectionsinwhichourmethodcouldbeextended.Herewecatalogseveralpossibilities:1.Clearlybeforeproceedingtocomplicatetheabovescheme,itwouldbebesttohaveanappropriatemethodtoperformtheoptimizationcrucialtoouranalysis.2.Addadditionalnodes:Insomesensewehavedrasticallylimitedthespaceofpossiblesolutionsbydemandingthatallnodesofourgraphliveontheperimeterofthegraph.Inadditiontosimplyconsideringaddingalargesetofinternalandperimeternodes,wenotethatcertainspecialadditions,suchasSteinerpoints,mayresultinlargecostreduction.3.Inthisanalysiswehavedividedtheimportantfeaturesofthesystemintotwocategories,conditionsandconstraints.Oftenforthesakeofavoidingsubjectivecomparisions,wehavede-scribedfeaturessuchasaestheticappealorangularityofthequadasconstraints.Whilewebelieveobjec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 厨师服务合同模板大全
- 2023-2024学年浙江摄影版(三起)(2020)小学信息技术五年级下册变量计数(教学设计)
- 1 自主选择课余生活 教学设计-2024-2025学年道德与法治五年级上册统编版
- 3人体与运动C 教学设计-八年级体育与健康
- 四年级第一学期语文教学计划
- 3公民意味着什么( 教学设计 )2023-2024学年统编版道德与法治六年级上册
- 7 生命最宝贵 第一课时 教学设计-2023-2024学年道德与法治三年级上册统编版
- 2023-2024学年粤教版(2019)高中信息技术必修一《数据与计算》第三章第一节《 体验计算机解决问题的过程》教学设计
- 19《海滨小城》(教学设计)2024-2025学年部编版语文三年级上册
- 小区临时停车合同范本
- 应收帐款质押担保合同
- 门诊诊所运行管理制度
- 2025年大模型应用落地白皮书:企业AI转型行动指南
- 体育馆施工图设计合同
- 2025年临床医师定期考核试题中医知识复习题库及答案(200题)
- 2025年临床医师定期考核必考复习题库及答案(900题)
- JTG5120-2021公路桥涵养护规范
- 《不一样的你我他》(完美)课件
- 新苏教版科学六年级下册全册教案(含反思)
- 外研版一起点二年级下册英语全册课件
- XE82000--午山风电场风机定检作业指导书
评论
0/150
提交评论