2023届浙江省宁波市第七中学数学高一上期末监测模拟试题含解析_第1页
2023届浙江省宁波市第七中学数学高一上期末监测模拟试题含解析_第2页
2023届浙江省宁波市第七中学数学高一上期末监测模拟试题含解析_第3页
2023届浙江省宁波市第七中学数学高一上期末监测模拟试题含解析_第4页
2023届浙江省宁波市第七中学数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.角的终边过点,则()A. B.C. D.2.已知命题,则命题的否定为()A. B.C. D.3.若sin(),α是第三象限角,则sin()=()A. B.C. D.4.命题p:,的否定是()A., B.,C., D.,5.已知函数是定义在在上的奇函数,且当时,,则函数的零点个数为()个A.2 B.3C.6 D.76.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.若,则的值为()A. B.C.或 D.8.的图像是端点为且分别过和两点的两条射线,如图所示,则的解集为A.B.C.D.9.已知函数,函数有三个零点,则取值范围是A. B.C. D.10.如图中,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有()A.①③ B.②③C.②④ D.②③④11.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②12.已知四面体ABCD中,E,F分别是AC,BD的中点,若AB=6,CD=8,EF=5,则AB与CD所成角的度数为A.30° B.45°C.60° D.90°二、填空题(本大题共4小题,共20分)13.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________14.已知平面,,直线,若,,则直线与平面的位置关系为______.15.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.16.将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,则该圆锥的底面半径为______三、解答题(本大题共6小题,共70分)17.设函数f(x)=(x>0)(1)作出函数f(x)的图象;(2)当0<a<b,且f(a)=f(b)时,求+的值;(3)若方程f(x)=m有两个不相等的正根,求m的取值范围18.已知全集,集合,.(1)当时,求;(2)若,且,求的取值范围.19.已知角的终边经过点.(1)求的值;(2)求的值.20.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值21.如图,三棱柱中,点是的中点.(1)求证:平面;(2)若平面,,,,求二面角的大小.22.对于函数f(x),若f(x0)=x0,则称x0为f(x)的“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”满足函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f[f(x)]=x}(Ⅰ)设f(x)=x2-2,求集合A和B;(Ⅱ)若f(x)=x2-a,且满足∅A=B,求实数a的取值范围

参考答案一、选择题(本大题共12小题,共60分)1、B【解析】由余弦函数的定义计算【详解】由题意到原点的距离为,所以故选:B2、D【解析】由特称(存在)量词命题的否定是全称量词命题直接可得.【详解】由特称(存在)量词命题的否定是全称量词命题直接可得:命题的否定为:.故选:D3、C【解析】由α是第三象限角,且sin(),可得为第二象限角,即可得,然后结合,利用两角和的正弦公式展开运算即可.【详解】解:因为α是第三象限角,则,又sin(),所以,即为第二象限角,则,则,故选:C.【点睛】本题考查了角的拼凑,重点考查了两角和的正弦公式,属基础题.4、C【解析】根据特称命题的否定是全称命题即可求解.【详解】解:命题p:,的否定是:,,故选:C.5、D【解析】作出函数,和图象,可知当时,的零点个数为3个;再根据奇函数的对称性,可知当时,也有3个零点,再根据,由此可计算出函数的零点个数.【详解】在同一坐标系中作出函数,和图象,如下图所示:由图象可知,当时,的零点个数为3个;又因为函数和均是定义在在上的奇函数,所以是定义在在上的奇函数,根据奇函数的对称性,可知当时,的零点个数也为3个,又,所以也是零点;综上,函数的零点个数一共有7个.故选:D.6、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含7、A【解析】分别令和,根据集合中元素的互异性可确定结果.【详解】若,则,不符合集合元素的互异性;若,则或(舍),此时,符合题意;综上所述:.故选:A.8、D【解析】作出g(x)=图象,它与f(x)的图象交点为和,由图象可得9、D【解析】根据题意做出函数在定义域内的图像,将函数零点转化成函数与函数图像交点问题,结合图形即可求解.【详解】解:根据题意画出函数的图象,如图所示:函数有三个零点,等价于函数与函数有三个交点,当直线位于直线与直线之间时,符合题意,由图象可知:,,所以,故选:D.【点睛】根据函数零点的情况求参数有三种常用方法:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.10、C【解析】对于①③可证出,两条直线平行一定共面,即可判断直线与共面;对于②④可证三点共面,但平面;三点共面,但平面,即可判断直线与异面.【详解】由题意,可知题图①中,,因此直线与共面;题图②中,三点共面,但平面,因此直线与异面;题图③中,连接,则,因此直线与共面;题图④中,连接,三点共面,但平面,所以直线与异面.故选C.【点睛】本题主要考查异面直线的定义,属于基础题.11、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.12、D【解析】取BC的中点P,连接PE,PF,则∠FPE(或补角)是AB与CD所成的角,利用勾股定理可求该角为直角.【详解】如图,取BC的中点P,连接PE,PF,则PF//CD,∠FPE(或补角)是AB与CD所成的角,∵AB=6,CD=8,∴PF=4,PE=3,而EF=5,所以PF2+P故选:D.【点睛】本题考查异面直线所成的角,此类问题一般需要通过平移构建平面角,再利用解三角形的方法求解.二、填空题(本大题共4小题,共20分)13、【解析】根据随机数表,依次进行选择即可得到结论.【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15.故答案为:15.14、【解析】根据面面平行的性质即可判断.【详解】若,则与没有公共点,,则与没有公共点,故.故答案为:.【点睛】本题考查面面平行的性质,属于基础题.15、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16、1【解析】设该圆锥的底面半径为r,推导出母线长为2r,再由圆锥的高为,能求出该圆锥的底面半径【详解】设该圆锥的底面半径为r,将一个高为的圆锥沿其侧面一条母线展开,其侧面展开图是半圆,,解得,圆锥的高为,,解得故答案为1【点睛】本题考查圆锥的底面半径的求法,考查圆锥性质、圆等基础知识,考查运算求解能力,是基础题三、解答题(本大题共6小题,共70分)17、(1)见解析;(2)2;(3)见解析.【解析】(1)将函数写成分段函数,先作出函,再将x轴下方部分翻折到轴上方即可得到函数图象;(2)根据函数的图象,可知在上是减函数,而在上是增函数,利用b且,即可求得的值;(3)构造函数,由函数的图象可得结论【详解】(1)如图所示(2)∵f(x)==故f(x)在(0,1]上是减函数,而在(1,+∞)上是增函数由0<a<b且f(a)=f(b),得0<a<1<b,且-1=1-,∴+=2.(3)由函数f(x)的图象可知,当0<m<1时,函数f(x)的图象与直线y=m有两个不同的交点,即方程f(x)=m有两个不相等的正根.【点睛】本题考查绝对值函数,考查数形结合的数学思想,考查学生的作图能力,正确作图是关键18、(1)(2)【解析】(1)解出不等式,然后可得答案;(2)由条件可得,,解出即可.【小问1详解】(1)由题意得:.当时,,所以,.【小问2详解】因为,所以,即.又,所以,解得.所以的取值范围.19、(1);(2).【解析】因为角终边经过点,设,,则,所以,,.(1)即得解;(2)化简即可得解.试题解析:因为角终边经过点,设,,则,所以,,.(1)(2)20、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或21、(1)见解析(2)【解析】(1)连接,交于点,连接,根据三角形中位线得到,进而得到线面平行;(2)根据二面角的定义可证得是二面角的平面角,在三角形BD中求解即可解析:(1)连接,交于点,连接.因为是三棱柱,所有四边形为平行四边形.所以是中点.因为点是的中点,所以是的中位线,所以,又平面,平面,所以平面.(2)是二面角的平面角.事实上,因为面,面,所以.在中,,是底边的中点,所以.因为,,,所以平面,因为平面,平面,所以,,所以是二面角的平面角.在直角三角形中,,,所以为等腰直角三角形,所以.22、(Ⅰ)A={-1,2};B={-,-1,,3}(Ⅱ)[-,]【解析】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;求解x可得集合B.(Ⅱ)理解A=B时,它表示方程x2-a=x与方程(x2-a)2-a=x有相同的实根,根据这个分析得出关于a的方程求出a的值【详解】(Ⅰ)由f(x)=x得x2-x-2=0,解得x=-1,x=2,故A={-1,2};由f(f(x))=x,可得f(x2-2)=x,即(x2-2)2-(x2-2)-2=x;即x4-2x3-6x2+6x+9=0,即(x+1)(x-3)(x2-3)=0,解得x=-1,x=3,x=,x=-,故B={-,-1,,3};(Ⅱ)∵∅A=B,∴x2-a=x有实根,即x2-x-a=0有实根,则△=1+4a≥0,解得a≥-由(x2-a)2-a=x,即x4-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论