湖南省邵东县第三中学2022-2023学年高一上数学期末考试模拟试题含解析_第1页
湖南省邵东县第三中学2022-2023学年高一上数学期末考试模拟试题含解析_第2页
湖南省邵东县第三中学2022-2023学年高一上数学期末考试模拟试题含解析_第3页
湖南省邵东县第三中学2022-2023学年高一上数学期末考试模拟试题含解析_第4页
湖南省邵东县第三中学2022-2023学年高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.角度化成弧度为()A. B.C. D.2.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件3.定义运算,则函数的部分图象大致是()A. B.C. D.4.幂函数的图像经过点,若.则()A.2 B.C. D.5.已知为常数,函数在内有且只有一个零点,则常数的值形成的集合是A. B.C. D.6.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃7.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为()A. B.C. D.8.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则9.已知直线ax+4y-2=0与2x-5y+b=0互相垂直,垂足为(1,c),则a+b+c的值为()A.-4 B.20C.0 D.2410.若,是第二象限角,则()A. B.3C.5 D.11.当时,在同一坐标系中,函数与的图像是()A. B.C. D.12.当时,函数(,),取得最小值,则关于函数,下列说法错误的是()A.是奇函数且图象关于点对称B.偶函数且图象关于点(π,0)对称C.是奇函数且图象关于直线对称D.是偶函数且图象关于直线对称二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.如果满足对任意实数,都有成立,那么a的取值范围是______14.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______.15.某商厦去年1月份的营业额为100万元.如果该商厦营业额的月增长率为1%,则商厦的月营业额首次突破110万元是在去年的___________月份.16.圆在点P(1,)处的切线方程为_____三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知,,求下列各式的值:(1)(2)18.已知函数的图像关于y轴对称(1)求k的值;(2)若此函数的图像在直线上方,求实数b的取值范围(提示:可考虑两者函数值的大小.)19.设函数.(1)若在区间上的最大值为,求的取值范围;(2)若在区间上有零点,求的最小值.20.设a∈R,是定义在R上的奇函数,且.(1)试求的反函数的解析式及的定义域;(2)设,若时,恒成立,求实数k的取值范围.21.已知函数是定义在上的奇函数.(1)求实数的值,并求函数的值域;(2)判断函数的单调性(不需要说明理由),并解关于的不等式.22.已知.(1)若能表示成一个奇函数和一个偶函数的和,求和的解析式;(2)若和在区间上都是减函数,求的取值范围;(3)在(2)的条件下,比较和的大小.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据题意,结合,即可求解.【详解】根据题意,.故选:A.2、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.3、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B4、D【解析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D5、C【解析】分析:函数在内有且只有一个零点,等价于,有一个根,函数与只有一个交点,此时,,详解:,,,,,,,,,,,,,,,令,,,,,,,,,∵零点只有一个,∴函数与只有一个交点,此时,,.故选C.点睛:函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数有零点函数在轴有交点方程有根函数与有交点.6、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B7、A【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解.【详解】由题意易得,,,.即G点的坐标为,故选:A.8、C【解析】根据空间中直线与平面,平面与平面的位置关系即得。【详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【点睛】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。9、A【解析】由垂直求出,垂足坐标代入已知直线方程求得,然后再把垂僄代入另一直线方程可得,从而得出结论【详解】由直线互相垂直可得,∴a=10,所以第一条直线方程为5x+2y-1=0,又垂足(1,c)在直线上,所以代入得c=-2,再把点(1,-2)代入另一方程可得b=-12,所以a+b+c=-4.故选:A10、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C11、D【解析】根据指数型函数和对数型函数单调性,判断出正确选项.【详解】由于,所以为上的递减函数,且过;为上的单调递减函数,且过,故只有D选项符合.故选:D.【点睛】本小题主要考查指数型函数、对数型函数单调性判断,考查函数图像的识别,属于基础题.12、C【解析】根据正弦型函数的性质逐一判断即可.【详解】因为当时,函数取得最小值,所以,因为,所以令,即,所以,设,因为,所以函数是奇函数,因此选项B、D不正确;因为,,所以,因此函数关于直线对称,因此选项A不正确,故选:C二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.14、【解析】由函数的解析式可得,据此解不等式即可得答案【详解】解:根据题意,函数,则,若,即,解可得:,即的取值范围为;故答案为.【点睛】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题.15、11【解析】根据指数函数模型求解【详解】设第月首次突破110万元,则,,,因此11月份首次突破110万元故答案为:1116、x-y+2=0【解析】圆,点在圆上,∴其切线方程为,整理得:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1).(2)【解析】(1)利用二倍角公式和诱导公式直接求解;(2)判断出,根据,求出的值.【小问1详解】因为,所以.【小问2详解】.因为,所以,所以,所以,所以,所以18、(1)(2)【解析】(1)根据函数是偶函数,结合偶函数的定义,求参数的值;(2)由题意可知恒成立,分离参数后可得,转化求函数的值域,即可求得的取值范围.【小问1详解】,所以,因为函数的图像关于轴对称,函数是偶函数,所以,即,解得:;【小问2详解】,由题意可知,恒成立,即,转化为,令,函数的值域是,所以.19、(1);(2)【解析】⑴根据函数图象可得在区间上的最大值必是和其中较大者,求解即可得到的取值范围;⑵设方程的两根是,,由根与系数之间的关系转化为,对其化简原式大于或者等于,构造新函数,利用函数的最值来求解解析:(1)因为图象是开口向上的抛物线,所以在区间上的最大值必是和中较大者,而,所以只要,即,得.(2)设方程的两根是,,且,则,所以,当且仅当时取等号.设,则,由,得,因此,所以,此时,由知.所以当且时,取得最小值.点睛:本题考查了函数零点的判定定理,二次函数的性质以及解不等式,在求参量的最值时,利用根与系数之间的关系,转化为根的方程,运用函数的思想当取得对称轴时有最值,本题需要进行化归转化,难度较大20、(1);(2).【解析】(1)根据函数的奇偶性求出的值,结合反函数的概念求出,利用指数函数的性质求出的取值范围即可;(2)由对数函数概念可得,将原问题转化为在恒成立,结合二次函数的性质即可得出结果.【小问1详解】因为为R上的奇函数,所以,即,解得,所以,为R上的奇函数,所以符合题意.有令,则,得,由得,即,;【小问2详解】由,得,由恒成立可得恒成立,即在恒成立,所以0<k21-因为,所以,解得.所以k的取值范围是.21、(1),的值域为;(2)在上单调递增,不等式的解集为.【解析】(1)根据定义域为R时,代入即可求得实数的值;根据函数单调性,结合指数函数的性质即可求得值域.(2)根据解析式判断函数的单调性;结合函数单调性即可解不等式.【详解】(1)由题意易知,,故,所以,,故函数的值域为(2)由(1)知,易知在上单调递增,且,故,所以不等式的解集为.【点睛】本题考查了奇函数性质的综合应用,根据函数单调性解不等式,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论