版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为2.若,是第二象限角,则()A. B.3C.5 D.3.已知命题,则p的否定为()A. B.C. D.4.设函数的定义域为,若存在,使得成立,则称是函数的一个不动点,下列函数存在不动点的是()A. B.C. D.5.已知函数(,,)的图象如图所示,则()A.B.对于任意,,且,都有C.,都有D.,使得6.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数7.幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的图象是A. B.C. D.8.已知,,,则A. B.C. D.9.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.6010.已知函数,若(其中.),则的最小值为()A. B.C.2 D.4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________12.若点P(1,﹣1)在圆x2+y2+x+y+k=0(k∈R)外,则实数k的取值范围为_____13.为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校男、女生比例为3:2,则全校抽取学生数为________14.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____15.不等式的解集是___________.(用区间表示)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知:,.设函数求:(1)的最小正周期;(2)的对称中心,(3)若,且,求17.设函数的定义域为,函数的定义域为(1)求;(2)若,求实数的取值范围18.已知函数的图象关于直线对称,且图象相邻两个最高点的距离为.(1)求和的值;(2)若,求的值.19.函数的定义域为,且对一切,都有,当时,总有.(1)求的值;(2)判断单调性并证明;(3)若,解不等式.20.已知函数是定义在上的奇函数,当时有.(1)求函数的解析式;(2)判断函数在上的单调性,并用定义证明.21.如图,直四棱柱中,上下底面为等腰梯形,.,,为线段的中点(1)证明:平面平面;
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B2、C【解析】由题知,再根据诱导公式与半角公式计算即可得答案.【详解】解:因为,是第二象限角,所以,所以.故选:C3、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D4、D【解析】把选项中不同的代入,去判断方程是否有解,来验证函数是否存在不动点即可.【详解】选项A:若,则,即,方程无解.故函数不存在不动点;选项B:若,则,即,方程无解.故函数不存在不动点;选项C:若,则,即或,两种情况均无解.故函数不存在不动点;选项D:若,则,即设,则,则函数在上存在零点.即方程有解.函数存在不动点.故选:D5、C【解析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C6、B【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题7、C【解析】设出函数的解析式,根据幂函数y=f(x)的图象过点(4,2),构造方程求出指数的值,再结合函数的解析式研究其性质即可得到图象【详解】设幂函数的解析式为y=xa,∵幂函数y=f(x)的图象过点(4,2),∴2=4a,解得a=∴,其定义域为[0,+∞),且是增函数,当0<x<1时,其图象在直线y=x的上方.对照选项故选C【点睛】本题考查的知识点是函数解析式的求解及幂函数图象及其与指数的关系,其中对于已经知道函数类型求解析式的问题,要使用待定系数法8、A【解析】故选9、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.10、B【解析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积12、【解析】首先把圆的一般方程化为标准方程,点在圆外,则圆心到直线的距离,从而得解.【详解】∵圆标准方程为,∴圆心坐标(,),半径r,若点(1,﹣1)在圆外,则满足k,且k>0,即﹣2<k,即实数k的取值范围是(﹣2,).故答案为:(﹣2,)【点睛】本题考查根据直线与圆的位置关系求参数的取值范围,属于基础题.13、80【解析】频率分布直方图中,先根据小矩形的面积等于这一组的频率求出四与第五组的频率和,再根据条件求出前三组的频数,再依据频率的和等于1,求出前三组的频率,从而求出抽取的男生数,最后按比例求出全校抽取学生数即可【详解】根据图可知第四与第五组的频率和为(0.0125+0.0375)×5=0.25∵从左到右前三个小组频率之比1:2:3,第二小组频数为12∴前三个小组的频数为36,从而男生有人∵全校男、女生比例为3:2,∴全校抽取学生数为48×=80故答案为80【点睛】本题考查频数,频率及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和运用意识14、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,15、【解析】根据一元二次不等式解法求不等式解集.【详解】由题设,,即,所以不等式解集为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)(k∈Z);(3)或.【解析】(1)解:由题意,,(1)函数的最小正周期为;(2),得,所以对称中心;(3)由题意,,得或,所以或点睛:本题考查三角函数的恒等关系的综合应用.本题中,由向量的数量积,同时利用三角函数化简的基本方法,得到,利用三角函数的性质,求出周期、对称中心等17、(1);(2).【解析】(1)由题知,即得;(2)根据,得,即求.【小问1详解】由题知,解得:,∴.【小问2详解】由题知,若,则,,实数的取值范围是.18、(1),;(2)【解析】(1)根据对称轴和周期可求和的值(2)由题设可得,利用同角的三角函数的基本关系式可得,利用诱导公式和两角和的正弦可求的值【详解】(1)因为图象相邻两个最高点的距离为,故周期为,所以,故又图象关于直线,故,所以,因为,故(2)由(1)得,因为,故,因为,故,故又【点睛】方法点睛:三角函数的中的化简求值问题,我们往往从次数的差异、函数名的差异、结构的差异和角的差异去分析,处理次数差异的方法是升幂降幂法,解决函数名差异的方法是弦切互化,而结构上差异的处理则是已知公式的逆用等,最后角的差异的处理则往往是用已知的角去表示未知的角.19、(1)(2)是上的增函数,证明见解析(3)【解析】(1)令代入即可.(2)证明单调性的一般思路是取,且再计算,故考虑取,代入,再利用当时,总有即可算得的正负,即可证明单调性.(3)利用将3写成的形式,再利用前两问的结论进行不等式的求解即可.【详解】(1)令,得,∴.(2)是上的增函数,证明:任取,且,则,∴,∴,即,∴是上的增函数.(3)由及,可得,结合(2)知不等式等价于,可得,解得.所以原不等式的解集为.【点睛】(1)单调性的证明方法:设定义域内的两个自变量,再计算,若,则为增函数;若,则为减函数.计算化简到最后需要判断每项的正负,从而判断的正负(2)利用单调性与奇偶性解决抽象函数不等式的问题,注意化简成的形式,若在区间上是增函数,则,并注意定义域.若在区间上是减函数,则,并注意定义域.20、(1);(2)见解析.【解析】(1)当时,则,可得,进而得到函数的解析式;(2)利用函数的单调性的定义,即可证得函数的单调性,得到结论.【详解】(1)由题意,当时,则,可得,因为函数为奇函数,所以,所以函数的解析式为.(2)函数在单调递增函数.证明:设,则因为,所以所以,即故在为单调递增函数【点睛】本题主要考查了利用函数的奇偶性求解函数的解析式,以及函数的单调性的判定与证明,其中解答中熟记函数的单调性的定义,以及熟练应用的函数的奇偶性是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1)证明见解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能制造成功转型企业如何应对工业4.0的挑战
- 新技术下的工联生态体系建设与发展规划
- 技术改造借贷合同范本
- 2025年湘师大新版选择性必修1历史上册月考试卷含答案
- 2025年苏人新版九年级地理上册阶段测试试卷含答案
- 2025年湘教新版九年级地理下册月考试卷
- 2025年沪科版选修1历史上册阶段测试试卷含答案
- 2025年沪教新版九年级历史上册阶段测试试卷含答案
- 2025年北师大版九年级历史下册月考试卷
- 2025年西师新版选择性必修1物理下册阶段测试试卷
- 2024年安全教育培训试题附完整答案(夺冠系列)
- 神农架研学课程设计
- 文化资本与民族认同建构-洞察分析
- 2025新译林版英语七年级下单词默写表
- 【超星学习通】马克思主义基本原理(南开大学)尔雅章节测试网课答案
- 《锡膏培训教材》课件
- 断绝父子关系协议书
- 福建省公路水运工程试验检测费用参考指标
- 2024年中国工业涂料行业发展现状、市场前景、投资方向分析报告(智研咨询发布)
- 自然科学基础(小学教育专业)全套教学课件
- 工程与伦理课程
评论
0/150
提交评论