




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知集合,集合,则()A. B.C. D.2.已知幂函数的图象过点(2,),则的值为()A. B.C. D.3.已知正实数满足,则最小值为A. B.C. D.4.已知函数,在下列区间中,包含零点的区间是A. B.C. D.5.下列函数中既是奇函数,又在区间上是增函数的是()A. B.C. D.6.若角的终边经过点,且,则()A.﹣2 B.C. D.27.下列四个函数中,以为最小正周期,且在区间上为减函数的是A. B.C. D.8.下列函数中,为偶函数的是()A. B.C. D.9.为了得到函数的图像,只需把函数的图像上()A.各点的横坐标缩短到原来的倍,再向左平移个单位B.各点的横坐标缩短到原来的倍,再向左平移个单位C.各点的横坐标缩短到原来的2倍,再向左平移个单位D.各点的横坐标缩短到原来的2倍,再向左平移个单位10.已知函数的部分图象如图所示,则的解析式可能为()A. B.C. D.11.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数12.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,,则____________14.已知是定义在上的奇函数,当时,,函数如果对,,使得,则实数m的取值范围为______15.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.16.设,则a,b,c的大小关系为_________.三、解答题(本大题共6小题,共70分)17.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.18.如图,有一块半径为4的半圆形钢板,计划裁剪成等腰梯形ABCD的形状,它的下底AB是圆O的直径,上底CD的端点在圆周上,连接OC两点,OC与OB所形成的夹角为.(1)写出这个梯形周长y和的函数解析式,并写出它的定义域;(2)求周长y的最大值以及此时梯形的面积.19.旅行社为某旅行团包飞机去旅游,其中旅行社的包机费为元.旅行团中的每个人的飞机票按以下方式与旅行社结算:若旅行团的人数不超过人时,飞机票每张元;若旅行团的人数多于人时,则予以优惠,每多人,每个人的机票费减少元,但旅行团的人数最多不超过人.设旅行团的人数为人,飞机票价格元,旅行社的利润为元.(1)写出每张飞机票价格元与旅行团人数之间的函数关系式;(2)当旅行团人数为多少时,旅行社可获得最大利润?求出最大利润.20.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.21.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域22.某口罩生产厂家目前月生产口罩总数为100万,因新冠疫情的需求,拟按照每月增长率为扩大生产规模,试解答下面的问题:(1)写出第月该厂家生产的口罩数(万只)与月数(个)的函数关系式;(2)计算第10个月该厂家月生产的口罩数(精确到0.1万);(3)计算第几月该厂家月生产的口罩数超过120万只(精确到1月)【参考数据】:
参考答案一、选择题(本大题共12小题,共60分)1、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.2、A【解析】令幂函数且过(2,),即有,进而可求的值【详解】令,由图象过(2,)∴,可得故∴故选:A【点睛】本题考查了幂函数,由幂函数的形式及其所过的定点求解析式,进而求出对应函数值,属于简单题3、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值4、C【解析】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.5、B【解析】利用函数的定义域、奇偶性、单调性等性质分别对各选项逐一判断即可得解.【详解】对于A,函数图象总在x轴上方,不是奇函数,A不满足;对于B,函数在R上递增,且,该函数是奇函数,B满足;对于C,函数是偶函数,C不满足;对于D,函数定义域是非零实数集,而,D不满足.故选:B6、D【解析】根据三角函数定义得到,计算得到答案.【详解】故选:【点睛】本题考查了三角函数定义,属于简单题.7、A【解析】最小正周期,且在区间上为减函数,适合;最小正周期为,不适合;最小正周期为,在区间上不单调,不适合;最小正周期为,在区间上为增函数,不适合.故选A8、D【解析】利用函数的奇偶性的定义逐一判断即可.【详解】A,因为函数定义域为:,且,所以为奇函数,故错误;B,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;C,,因为函数定义域为:R,,而,所以函数为非奇非偶函数,故错误;D,因为函数定义域为:R,,所以函数为偶函数,故正确;故选:D.9、B【解析】各点的横坐标缩短到原来的倍,变为,再向左平移个单位,得到.10、C【解析】根据奇偶性排除A和D,由排除B.【详解】由图可知,的图象关于原点对称,是奇函数,,,则函数,是偶函数,排除A和D.当时,恒成立,排除B.故选:C11、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.12、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案二、填空题(本大题共4小题,共20分)13、【解析】,,考点:三角恒等变换14、【解析】先求出时,,,然后解不等式,即可求解,得到答案【详解】由题意,可知时,为增函数,所以,又是上的奇函数,所以时,,又由在上的最大值为,所以,,使得,所以.故答案为【点睛】本题主要考查了函数的奇偶性的判定与应用,以及函数的最值的应用,其中解答中转化为是解答的关键,着重考查了转化思想,推理与运算能力,属于基础题.15、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:216、【解析】根据指数函数和对数函数的单调性可得到,,,从而可比较a,b,c的大小关系.【详解】因为,,,所以.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)-1;(2);(3)【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增,在R上单增,所以在R上单增且.则可化为.又因为在R上单增,所以,换底得:,即.令,则,问题转化为在上有两根,即,令,,分别作出图像如图所示:只需,解得:.即实数m的取值范围为.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解18、(1),(2)20,【解析】(1)过点C作,表示出,,即可写出梯形周长y和的函数解析式;(2)令,结合二次函数求出y的最大值,求出此时的,再计算梯形面积即可.【小问1详解】由题意得.半圆形钢板半径为4,则,过点C作.在和中,有,,.在中,因为,为等腰三角形,故,所以,.,.【小问2详解】由.令,则,则.则当时,周长y有最大值,最大值20,此时,.故梯形的高,,.19、(1);(2)当旅游团人数为或时,旅行社可获得最大利润为元.【解析】(1)讨论和两种情况,分别计算得到答案.(2),分别计算最值得到答案.【详解】(1)依题意得,当时,.当时,;∴(2)设利润为,则.当且时,,当且时,,其对称轴为因为,所以当或时,.故当旅游团人数为或时,旅行社可获得最大利润为元.【点睛】本题考查了分段函数的应用,意在考查学生的应用能力和计算能力.20、(1)证明见解析(2)奇函数,证明见解析(3)【解析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇函数.【小问3详解】解:由(1)知,函数在上单调递增,又因为x是增函数,所以是上的增函数,由,可得,由,可得,因为奇函数,所以,所以原不等式可化为,则,解得,所以原不等式的解集为21、(1)(2)函数的单调减区间为,单调增区间为(3)【解析】(1)利用求得.(2)根据三角函数单调区间的求法,求得在区间上的单调区间.(3)根据三角函数值域的求法,求得在区间上的值域.【小问1详解】由函数的最小正周期为,,所以,可得,【小问2详解】由(1)可知,当,有,,当,可得,故当时,函数单调减区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 眼视光技术专业教学标准(高等职业教育专科)2025修订
- 中国褥垫行业市场发展现状及投资战略咨询报告
- 2022-2027年中国蛋白饮料行业市场深度分析及发展战略规划报告
- 棕刚玉砂轮项目投资可行性研究分析报告(2024-2030版)
- 中国低压母线桥市场深度分析及投资战略咨询报告
- 中国移动机器人(AGV) 行业市场行情动态分析及发展前景趋势预测报告
- 中国铝焊条行业市场调查报告
- 中国鸳鸯养殖行业市场全景评估及投资策略咨询报告
- 中国位置大数据行业投资潜力分析及行业发展趋势报告
- 2025年 内蒙古公务员考试行测试题省直附答案
- 2023年河南省豫地科技集团有限公司招聘笔试题库及答案解析
- (村卫生室)国家基本公共卫生服务项目培训试题附答案
- 股权买卖协议范本
- 中关村东升科技园二期概念性规划设计方案
- 复方利多卡因乳膏课件
- 土木工程学院社会评机制及实施办法
- 高填方、高边坡及软基路基监测方案
- 精品灌溉引水工程施工组织设计
- 救护车注册登记审批表
- 口腔颌面部手术的麻醉PPT学习教案
- 平衡与协调训练PPT课件
评论
0/150
提交评论