![2023届西藏自治区日喀则市南木林高中数学高一上期末学业质量监测试题含解析_第1页](http://file4.renrendoc.com/view/4995e94581cfed7b165a8fa86523aabc/4995e94581cfed7b165a8fa86523aabc1.gif)
![2023届西藏自治区日喀则市南木林高中数学高一上期末学业质量监测试题含解析_第2页](http://file4.renrendoc.com/view/4995e94581cfed7b165a8fa86523aabc/4995e94581cfed7b165a8fa86523aabc2.gif)
![2023届西藏自治区日喀则市南木林高中数学高一上期末学业质量监测试题含解析_第3页](http://file4.renrendoc.com/view/4995e94581cfed7b165a8fa86523aabc/4995e94581cfed7b165a8fa86523aabc3.gif)
![2023届西藏自治区日喀则市南木林高中数学高一上期末学业质量监测试题含解析_第4页](http://file4.renrendoc.com/view/4995e94581cfed7b165a8fa86523aabc/4995e94581cfed7b165a8fa86523aabc4.gif)
![2023届西藏自治区日喀则市南木林高中数学高一上期末学业质量监测试题含解析_第5页](http://file4.renrendoc.com/view/4995e94581cfed7b165a8fa86523aabc/4995e94581cfed7b165a8fa86523aabc5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的部分图象如图所示,将其向右平移个单位长度后得到的函数解析式为()A. B.C. D.2.已知,,则A. B.C. D.3.设集合,,则集合A. B.C. D.4.函数在区间(0,1)内的零点个数是A.0 B.1C.2 D.35.若角的终边和单位圆的交点坐标为,则()A. B.C. D.6.已知集合,则()A. B.C. D.7.集合,集合或,则集合()A. B.C. D.8.已知函数则满足的实数的取值范围是()A. B.C. D.9.已知集合,则()A. B.C. D.R10.若角,均为锐角,,,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像恒过定点___________12.已知函数若,则实数___________.13.已知,则________.14.函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于原点对称,则的值为__________15.已知函数(1)当时,求的值域;(2)若,且,求的值;16.___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,(1)若,求的值;(2)若,,求的值域18.已知,,求,实数a的取值范围19.已知函数,函数的最小正周期为,是函数的一条对称轴.(1)求函数的对称中心和单调区间;(2)若,求函数在的最大值和最小值,并写出对应的的值20.已知角终边上有一点,且.(1)求m的值,并求与的值;(2)化简并求的值.21.在平面直角坐标系中,已知,,动点满足.(1)若,求面积的最大值;(2)已知,是否存在点C,使得,若存在,求点C的个数;若不存在,说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由函数图象求出、、和的值,写出的解析式,再根据图象平移得出函数解析式【详解】由函数图象知,,,解得,所以,所以函数;因为,所以,;解得,;又,所以;所以;将函数的图象向右平移个单位长度后,得的图象,即故选:2、A【解析】∵∴∴∴故选A3、D【解析】并集由两个集合所有元素组成,排除重复的元素,故选.4、B【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点5、C【解析】直接利用三角函数的定义可得.【详解】因为角的终边和单位圆的交点坐标为,所以由三角函数定义可得:.故选:C6、D【解析】求出集合A,再求A与B的交集即可.【详解】∵,∴.故选:D.7、C【解析】先求得,结合集合并集的运算,即可求解.【详解】由题意,集合或,可得,又由,所以.故选:C.8、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.9、D【解析】求出集合A,再利用并集的定义直接计算作答.【详解】依题意,,而,所以故选:D10、B【解析】根据给定条件,利用同角公式及差角的正弦公式计算作答.【详解】角,均为锐角,即,而,则,又,则,所以,.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.12、2【解析】先计算,再计算即得解.【详解】解:,所以.故答案为:213、【解析】利用诱导公式化简等式,可求出的值,将所求分式变形为,在所得分式的分子和分母中同时除以,将所求分式转化为只含的代数式,代值计算即可.【详解】,,,因此,.故答案为:.【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出的值,考查计算能力,属于基础题.14、【解析】由题意知,先明确值,该函数平移后为奇函数,根据奇函数性质得图象过原点,由此即可求得值【详解】∵函数的最小正周期为,∴,即,将的图象向左平移个单位长度,所得函数为,又所得图象关于原点对称,∴,即,又,∴故答案为:【点睛】本题考查函数y=Asin(ωx+φ)的图象变换,考查奇偶函数的性质,要熟练掌握图象变换的方法15、(1)(2)【解析】(1)化简函数解析式为,再利用余弦函数的性质求函数的值域即可;(2)由已知得,利用同角之间的关系求得,再利用凑角公式及两角差的余弦公式即可得解.【小问1详解】,,利用余弦函数的性质知,则【小问2详解】,又,,则则16、【解析】利用、两角和的正弦展开式进行化简可得答案.【详解】故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【点睛】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.18、【解析】由题意利用指数函数、对数函数、幂函数的单调性,求出实数的取值范围【详解】解:因为,所以,所以因为,所以,所以又因为,所以.因为,所以又因为,所以.综上,实数a取值范围是19、(1)对称中心是,单调递增区间是,单调递减区间是(2)当时,,当时,【解析】(1)由函数的最小正周期,求得,再根据当时,函数取到最值求得,根据函数的性质求对称中心和单调区间;(2)写出的解析式,根据定义域,求最值【详解】(1),,,所以,,对称中心是,单调递增区间是,单调递减区间是(2),,当时,,当时,【点睛】三角函数最值问题要注意整体代换思想的体现,由的取值范围推断的取值范围20、(1)m=-4;,.(2)【解析】(1)利用三角函数的定义分别求出m的值和与的值;(2)先化简,再求值.【小问1详解】由角终边上有一点,且由三角函数的定义可得:,解得:m=-4.所以,.【小问2详解】21、(1)(2)存在2个点C符合要求【解析】(1)由,利用两点间距离公式可得,整理得到,由,若面积最大,则到距离最大,即最大,求解即可;(2)由,利用两点间距离公式可得,整理得到,则点为圆与圆的交点,进而由两圆的位置关系即可得到符合条件的点的个数【详解】解:(1)由,得,化简,即,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大学物理(上册)》课件-第1章
- 2025-2030全球车辆燃油油位计行业调研及趋势分析报告
- 2025-2030全球电积铜行业调研及趋势分析报告
- 2025年全球及中国直接空气捕获和储存(DACS)行业头部企业市场占有率及排名调研报告
- 2025-2030全球多层土壤传感器行业调研及趋势分析报告
- 2025年全球及中国阻燃塑料薄膜和片材行业头部企业市场占有率及排名调研报告
- 2025-2030全球医用手指康复训练仪行业调研及趋势分析报告
- 2025-2030全球化学谷物熏蒸剂行业调研及趋势分析报告
- 2025年全球及中国智慧教育公共服务平台行业头部企业市场占有率及排名调研报告
- 2025年全球及中国工业胶囊填充设备行业头部企业市场占有率及排名调研报告
- 2025年度院感管理工作计划(后附表格版)
- 励志课件-如何做好本职工作
- 化肥销售工作计划
- 2024浙江华数广电网络股份限公司招聘精英18人易考易错模拟试题(共500题)试卷后附参考答案
- 2024年山东省济南市中考英语试题卷(含答案解析)
- 2024年社区警务规范考试题库
- 2025中考英语作文预测:19个热点话题及范文
- 第10讲 牛顿运动定律的综合应用(一)(讲义)(解析版)-2025年高考物理一轮复习讲练测(新教材新高考)
- 静脉治疗护理技术操作标准(2023版)解读 2
- 2024年全国各地中考试题分类汇编(一):现代文阅读含答案
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
评论
0/150
提交评论