2023学年湖北省十堰市北京路中学高三第一次调研测试数学试卷(含答案解析)_第1页
2023学年湖北省十堰市北京路中学高三第一次调研测试数学试卷(含答案解析)_第2页
2023学年湖北省十堰市北京路中学高三第一次调研测试数学试卷(含答案解析)_第3页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.2.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.13.函数且的图象是()A. B.C. D.4.已知分别为双曲线的左、右焦点,点是其一条渐近线上一点,且以为直径的圆经过点,若的面积为,则双曲线的离心率为()A. B. C. D.5.已知集合,则为()A.[0,2) B.(2,3] C.[2,3] D.(0,2]6.在中,角、、所对的边分别为、、,若,则()A. B. C. D.7.已知函数,若,则等于()A.-3 B.-1 C.3 D.08.已知随机变量的分布列是则()A. B. C. D.9.已知函数满足,当时,,则()A.或 B.或C.或 D.或10.命题“”的否定是()A. B.C. D.11.是虚数单位,复数在复平面上对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.点为棱长是2的正方体的内切球球面上的动点,点为的中点,若满足,则动点的轨迹的长度为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,,则的值是______.14.的展开式中的系数为________________.15.的展开式中的常数项为__________.16.已知复数z是纯虚数,则实数a=_____,|z|=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)正项数列的前n项和Sn满足:(1)求数列的通项公式;(2)令,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有Tn<.18.(12分)如图,已知椭圆经过点,且离心率,过右焦点且不与坐标轴垂直的直线与椭圆相交于两点.(1)求椭圆的标准方程;(2)设椭圆的右顶点为,线段的中点为,记直线的斜率分别为,求证:为定值.19.(12分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.(Ⅰ)证明:平面平面;(Ⅱ)求二面角的余弦值.20.(12分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.21.(12分)已知数列的前项和为,且满足.(Ⅰ)求数列的通项公式;(Ⅱ)证明:.22.(10分)已知数列满足,且.(1)求证:数列是等差数列,并求出数列的通项公式;(2)求数列的前项和.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】

对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【题目详解】因为为纯虚数,所以,得所以.故选A项【答案点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.2.B【答案解析】

过点的直线与圆:相切于点,可得.因此,即可得出.【题目详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【答案点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.3.B【答案解析】

先判断函数的奇偶性,再取特殊值,利用零点存在性定理判断函数零点分布情况,即可得解.【题目详解】由题可知定义域为,,是偶函数,关于轴对称,排除C,D.又,,在必有零点,排除A.故选:B.【答案点睛】本题考查了函数图象的判断,考查了函数的性质,属于中档题.4.B【答案解析】

根据题意,设点在第一象限,求出此坐标,再利用三角形的面积即可得到结论.【题目详解】由题意,设点在第一象限,双曲线的一条渐近线方程为,所以,,又以为直径的圆经过点,则,即,解得,,所以,,即,即,所以,双曲线的离心率为.故选:B.【答案点睛】本题主要考查双曲线的离心率,解决本题的关键在于求出与的关系,属于基础题.5.B【答案解析】

先求出,得到,再结合集合交集的运算,即可求解.【题目详解】由题意,集合,所以,则,所以.故选:B.【答案点睛】本题主要考查了集合的混合运算,其中解答中熟记集合的交集、补集的定义及运算是解答的关键,着重考查了计算能力,属于基础题.6.D【答案解析】

利用余弦定理角化边整理可得结果.【题目详解】由余弦定理得:,整理可得:,.故选:.【答案点睛】本题考查余弦定理边角互化的应用,属于基础题.7.D【答案解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系.8.C【答案解析】

利用分布列求出,求出期望,再利用期望的性质可求得结果.【题目详解】由分布列的性质可得,得,所以,,因此,.故选:C.【答案点睛】本题考查离散型随机变量的分布列以及期望的求法,是基本知识的考查.9.C【答案解析】

简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【题目详解】由,可知函数关于对称当时,,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【答案点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,,考验分析能力,属中档题.10.D【答案解析】

根据全称命题的否定是特称命题,对命题进行改写即可.【题目详解】全称命题的否定是特称命题,所以命题“,”的否定是:,.故选D.【答案点睛】本题考查全称命题的否定,难度容易.11.D【答案解析】

求出复数在复平面内对应的点的坐标,即可得出结论.【题目详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【答案点睛】本题考查复数对应的点的位置的判断,属于基础题.12.C【答案解析】

设的中点为,利用正方形和正方体的性质,结合线面垂直的判定定理可以证明出平面,这样可以确定动点的轨迹,最后求出动点的轨迹的长度.【题目详解】设的中点为,连接,因此有,而,而平面,,因此有平面,所以动点的轨迹平面与正方体的内切球的交线.正方体的棱长为2,所以内切球的半径为,建立如下图所示的以为坐标原点的空间直角坐标系:因此有,设平面的法向量为,所以有,因此到平面的距离为:,所以截面圆的半径为:,因此动点的轨迹的长度为.故选:C【答案点睛】本题考查了线面垂直的判定定理的应用,考查了立体几何中轨迹问题,考查了球截面的性质,考查了空间想象能力和数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

根据圆柱的体积为,以及圆锥的体积公式,计算即得.【题目详解】由题得,,得.故答案为:【答案点睛】本题主要考查圆锥体的体积,是基础题.14.【答案解析】

在二项展开式的通项中令的指数为,求出参数值,然后代入通项可得出结果.【题目详解】的展开式的通项为,令,因此,的展开式中的系数为.故答案为:.【答案点睛】本题考查二项展开式中指定项系数的求解,涉及二项展开式通项的应用,考查计算能力,属于基础题.15.31【答案解析】

由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开式中的常数项为:,得解.【题目详解】解:,则的展开式中的常数项为:.故答案为:31.【答案点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.16.11【答案解析】

根据复数运算法则计算复数z,根据复数的概念和模长公式计算得解.【题目详解】复数z,∵复数z是纯虚数,∴,解得a=1,∴z=i,∴|z|=1,故答案为:1,1.【答案点睛】此题考查复数的概念和模长计算,根据复数是纯虚数建立方程求解,计算模长,关键在于熟练掌握复数的运算法则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)见解析【答案解析】

(1)因为数列的前项和满足:,所以当时,,即解得或,因为数列都是正项,所以,因为,所以,解得或,因为数列都是正项,所以,当时,有,所以,解得,当时,,符合所以数列的通项公式,;(2)因为,所以,所以数列的前项和为:,当时,有,所以,所以对于任意,数列的前项和.18.(1);(2)详见解析.【答案解析】

(1)由椭圆离心率、系数关系和已知点坐标构建方程组,求得,代入标准方程中即可;(2)依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,,通过联立直线方程与椭圆方程化简整理和中点的坐标表示用含k的表达式表示,,进而表示;由韦达定理表示根与系数的关系进而表示用含k的表达式表示,最后做比即得证.【题目详解】(1)设椭圆的焦距为,则,即,所以.依题意,,即,解得,所以,.所以椭圆的标准方程为.(2)证明:依题意,直线的斜率存在,且不为0,设其为,则直线的方程为,设,.与椭圆联立整理得,故所以,,所以.又,所以为定值,得证.【答案点睛】本题考查由离心率求椭圆的标准方程,还考查了椭圆中的定值问题,属于较难题.19.(Ⅰ)证明见解析;(Ⅱ).【答案解析】

(Ⅰ)先证明

,再证明平面,利用面面垂直的判定定理,即可求证所求证;(Ⅱ)根据题意以为轴、轴、轴建立空间直角坐标系,求出平面和平面的向量,利用公式即可求解.【题目详解】(Ⅰ)证:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以为轴、轴、轴建立如图所示的空间直角坐标系,则,,,设平面的法向量为,则令,则,是平面的一个法向量设平面的一个法向量为令,则是平面的一个法向量=又二面角为钝二面角,其余弦值为.【答案点睛】本题考查线面、面面垂直的判定定理与性质定理,考查向量法求二面角的余弦值,考查直观想象能力与运算求解能力,属于中档题.20.(1)答案不唯一,具体见解析(2)证明见解析(3)证明见解析【答案解析】

(1)求出的定义域,导函数,对参数、分类讨论得到答案.(2)设函数,求导说明函数的单调性,求出函数的最大值,即可得证.(3)由(1)可知,可得,即又即可得证.【题目详解】(1)解:的定义域为,,当,时,,则在上单调递增;当,时,令,得,令,得,则在上单调递减,在上单调递增;当,时,,则在上单调递减;当,时,令,得,令,得,则在上单调递增,在上单调递减;(2)证明:设函数,则.因为,所以,,则,从而在上单调递减,所以,即.(3)证明:当时,.由(1)知,,所以,即.当时,,,则,即,又,所以,即.【答案点睛】本题考查利用导数研究含参函数的单调性,利用导数证明不等式,属于难题.21.(Ⅰ),.(Ⅱ)见解析【答案解析】

(1)由,分和两种情况,即可求得数列的通项公式;(2)由题,得,利用等比数列求和公式,即可得到本题答案.【题目详解】(Ⅰ)解:由题,得当时,,得;当时,,整理,得.数列是以1为首项,2为公比的等比数列,,;(Ⅱ)证明:由(Ⅰ)知,,故.故得证.【答案点睛】本题主要考查根据的关系式求通项公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论