2022-2023学年吉林省舒兰一中蛟河一中等百校联盟数学高一上期末统考试题含解析_第1页
2022-2023学年吉林省舒兰一中蛟河一中等百校联盟数学高一上期末统考试题含解析_第2页
2022-2023学年吉林省舒兰一中蛟河一中等百校联盟数学高一上期末统考试题含解析_第3页
2022-2023学年吉林省舒兰一中蛟河一中等百校联盟数学高一上期末统考试题含解析_第4页
2022-2023学年吉林省舒兰一中蛟河一中等百校联盟数学高一上期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.函数的部分图象大致是A. B.C. D.2.若角的终边经过点,则A. B.C. D.3.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个4.已知直线与圆交于A,两点,则()A.1 B.C. D.5.为了得到函数的图象,只需将的图象上的所有点A.横坐标伸长2倍,再向上平移1个单位长度B.横坐标缩短倍,再向上平移1个单位长度C.横坐标伸长2倍,再向下平移1个单位长度D.横坐标缩短倍,再向下平移1个单位长度6.数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心(三边中垂线的交点)、重心(三边中线的交点)、垂心(三边高的交点)依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知的顶点为,,,则该三角形的欧拉线方程为().注:重心坐标公式为横坐标:;纵坐标:A. B.C. D.7.给定已知函数.若动直线y=m与函数的图象有3个交点,则实数m的取值范围为A. B.C. D.8.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.9.设为上的奇函数,且在上单调递增,,则不等式的解集是()A B.C. D.10.若命题:,则命题的否定为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若在内有两个不同的实数值满足等式,则实数k的取值范围是_______12.函数定义域为___________13.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.14.函数恒过定点________.15.如图,在平面直角坐标系中,矩形的顶点、分别在轴非负半轴和轴的非负半轴上滑动,顶点在第一象限内,,,设.若,则点的坐标为______;若,则的取值范围为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值17.化简求值(1);(2).18.已知函数,.(1)解不等式:;(2)若函数在区间上存在零点,求实数的取值范围;(3)若函数的反函数为,且,其中为奇函数,为偶函数,试比较与的大小.19.某种商品在天内每克的销售价格(元)与时间的函数图象是如图所示的两条线段(不包含两点);该商品在30天内日销售量(克)与时间(天)之间的函数关系如下表所示:第天5152030销售量克35252010(1)根据提供的图象,写出该商品每克销售的价格(元)与时间的函数关系式;(2)根据表中数据写出一个反映日销售量随时间变化的函数关系式;(3)在(2)的基础上求该商品的日销售金额的最大值,并求出对应的值.(注:日销售金额=每克的销售价格×日销售量)20.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离21.已知的顶点、、,试求:(1)求边的中线所在直线方程;(2)求边上的高所在直线的方程.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】判断f(x)的奇偶性,在(,π)上的单调性,再通过f()的值判断详解:f(﹣x)==﹣f(x),∴f(x)是奇函数,f(x)的图象关于原点对称,排除C;,排除A,当x>0时,f(x)=,f′(x)=,∴当x∈(,π)时,f′(x)>0,∴f(x)在(,π)上单调递增,排除D,故选B点睛:点睛:本题考查函数图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.2、C【解析】根据三角函数定义可得,判断符号即可.【详解】解:由三角函数的定义可知,符号不确定,,故选:C【点睛】任意角的三角函数值:(1)角与单位圆交点,则;(2)角终边任意一点,则.3、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B4、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C5、B【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】将的图象上的所有点的横坐标缩短倍(纵坐标不变),可得y=3sin2x的图象;再向上平行移动个单位长度,可得函数的图象,故选B【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题6、D【解析】由重心坐标公式得重心的坐标,根据垂直平分线的性质设出外心的坐标为,再由求出,然后求出欧拉线的斜率,点斜式就可求得其方程.【详解】设的重点为,外心为,则由重心坐标公式得,并设的坐标为,解得,即欧拉方程为:,即:故选:D【点睛】本题考查直线方程,两点之间的距离公式,三角形的重心、垂心、外心的性质,考查了理解辨析能力及运算能力.7、B【解析】画出函数的图像以及直线y=k的图像,根据条件和图像求得k的范围。【详解】设,由题可知,当,即或时,;当,即时,,因为,故当时,,当时,,做出函数的图像如图所示,直线y=m与函数有3个交点,可得k的范围为(4,5).故选:B【点睛】本题考查函数图像与直线有交点问题,先分别求出各段函数的解析式,再利用数形结合的方法得到参数的取值范围。8、C【解析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C9、D【解析】根据函数单调性结合零点即可得解.【详解】为上的奇函数,且在上单调递增,,得:或解得.故选:D10、D【解析】根据存在量词的否定是全称量词可得结果.【详解】根据存在量词的否定是全称量词可得命题的否定为.故选:D二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】讨论函数在的单调性即可得解.【详解】函数,时,单调递增,时,单调递减,,,,所以在内有两个不同的实数值满足等式,则,所以.故答案为:12、[0,1)【解析】要使函数有意义,需满足,函数定义域为[0,1)考点:函数定义域13、【解析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【点睛】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.14、【解析】根据函数图象平移法则和对数函数的性质求解即可【详解】将的图象现左平移1个单位,再向下平移2个单位,可得到的图象,因为的图象恒过定点,所以恒过定点,故答案为:15、①.②.【解析】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,设点、,根据锐角三角函数的定义可得出点、的坐标,然后利用平面向量数量积的坐标运算和二倍角的正弦公式可求出的取值范围.【详解】分别过点作、轴的垂线,垂足点分别为、,过点分别作、轴的垂线,垂足点分别为、,如下图所示:则,设点、,则,,,.当时,,,则点;由上可知,,,则,因此,的取值范围是.故答案为:;.【点睛】本题考查点的坐标的计算,同时也考查了平面向量数量积的取值范围的求解,解题的关键就是将点的坐标利用三角函数表示,考查运算求解能力,属于中等题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2);【解析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1详解】设,因为,所以整理的,故有,即,所以.【小问2详解】,设,故又,∵,所以,在为增函数,∴即时,;即时,17、(1)109;(2).【解析】(1)利用指数幂运算和分数指数幂与根式的转化,化简求值即可;(2)利用对数运算性质化简求值即可.【详解】解:(1)原式;(2)原式.18、(1)或;(2);(3)【解析】(1)根据二次不等式和对数不等式的解法求解即可得到所求;(2)由可得,故所求范围即为函数在区间上的值域,根据换元法求出函数的值域即可;(3)根据题意可求出,进而得到和,于是可得大小关系【详解】(1)由,得或,即或,解得,所以原不等式的解集为(2)令,得令,由,得,则,其中令,则在上单调递增,所以,即,所以.故实数的取值范围为(3)由题意得,即,因此,因为为奇函数,为偶函数,所以,解得,所以,,因此另法:,所以【点睛】(1)本题考查函数知识的综合运用,解题时要注意函数、方程、不等式间的关系的应用,根据条件及要求合理求解(2)解决函数零点问题时,可转化为方程解得问题处理,也可利用分离变量的方法求解,转化为求具体函数值域的问题,解题时注意转化的合理性和等价性19、(1);(2);(3)25.【解析】(1)设AB所在的直线方程为P=kt+20,将B点代入可得k值,由CD两点坐标可得直线CD所在的两点式方程,进而可得销售价格P(元)与时间t的分段函数关系式(2)设Q=k1t+b,把两点(5,35),(15,25)的坐标代入,可得日销售量Q随时间t变化的函数的解析式(3)设日销售金额为y,根据销售金额=销售价格×日销售量,结合(1)(2)的结论得到答案【详解】(1)由图可知,,,,设所在直线方程为,把代入得,所以.,由两点式得所在的直线方程为,整理得,,,所以,(2)由题意,设,把两点,代入得,解得所以把点,代入也适合,即对应的四点都在同一条直线上,所以.(本题若把四点中的任意两点代入中求出,,再验证也可以)(3)设日销售金额为,依题意得,当时,配方整理得,当时,在区间上的最大值为900当时,,配方整理得,所以当时,在区间上的最大值为1125.综上可知日销售金额最大值为1125元,此时.【点睛】本小题主要考查具体的函数模型在实际问题中的应用,考查数形结合、化归转化的数学思想方法,以及应用意识和运算求解能力20、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论