2022-2023学年浙江省杭州求是高级中学高一上数学期末综合测试试题含解析_第1页
2022-2023学年浙江省杭州求是高级中学高一上数学期末综合测试试题含解析_第2页
2022-2023学年浙江省杭州求是高级中学高一上数学期末综合测试试题含解析_第3页
2022-2023学年浙江省杭州求是高级中学高一上数学期末综合测试试题含解析_第4页
2022-2023学年浙江省杭州求是高级中学高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在区间上的奇函数,当时,.则关于的不等式的解集为A. B.C. D.2.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.3.将函数的图象向左平移个单位长度得到函数的图象,下列说法正确的是()A.是奇函数 B.的周期是C.的图象关于直线对称 D.的图象关于点对称4.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四5.已知在上的减函数,则实数的取值范围是()A. B.C. D.6.已知,若,则的取值范围是()A. B.C. D.7.函数的定义域为A. B.C. D.8.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22929.已知函数则满足的实数的取值范围是()A. B.C. D.10.已知点P3,-4是角α的终边上一点,则sinA.-75C.15 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,求________12.已知函数在上单调递增,则实数a的取值范围为____.13.已知,且,写出一个满足条件的的值:______.14.已知幂函数的图象经过点,则___________.15.如图所示,将等腰直角沿斜边上的高折成一个二面角,使得.那么这个二面角大小是_______16.已知函数,则_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.函数部分图象如下图所示:(1)求函数的解析式;(2)求函数的最小正周期与单调递减区间;(3)求函数在上的值域18.已知在半径为的圆中,弦的长为.(1)求弦所对的圆心角的大小;(2)求圆心角所在的扇形弧长及弧所在的弓形的面积.19.某市有A、B两家羽毛球球俱乐部,两家设备和服务都很好,但收费方式不同,A俱乐部每块场地每小时收费6元;B俱乐部按月计费,一个月中20小时以内含20小时每块场地收费90元,超过20小时的部分,每块场地每小时2元,某企业准备下个月从这两家俱乐部中的一家租用一块场地开展活动,其活动时间不少于12小时,也不超过30小时设在A俱乐部租一块场地开展活动x小时的收费为元,在B俱乐部租一块场地开展活动x小时的收费为元,试求与的解析式;问该企业选择哪家俱乐部比较合算,为什么?20.已知函数.(1)求的最小正周期;(2)当时,求的最大值和最小值.21.已知函数(,为常数,且)的图象经过点,(1)求函数的解析式;(2)若关于不等式对都成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:根据函数奇偶性的性质将不等式进行转化为一般的不等式求解即可详解:∵,函数f(x)为奇函数,∴,又f(x)是定义在[−1,1]上的减函数,∴,即,解得∴不等式的解集为故选A点睛:解题的关键是根据函数的奇偶性将不等式化为或的形式,然后再根据单调性将函数不等式化为一般的不等式求解,解题时不要忘了函数定义域的限制2、D【解析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D3、D【解析】利用三角函数图象变换可得函数的解析式,然后利用余弦型函数的基本性质逐项判断可得出正确选项.【详解】由题意可得,对于A,函数是偶函数,A错误:对于B,函数最小周期是,B错误;对于C,由,则直线不是函数图象的对称轴,C错误;对于D,由,则是函数图象的一个对称中心,D正确.故选:D.4、A【解析】根据判断、、的正负号,即可判断直线通过的象限【详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【点睛】本题考查直线,作为选择题5、B【解析】令,,()若,则函数,减函数,由题设知为增函数,需,故此时无解()若,则函数是增函数,则为减函数,需且,可解得综上可得实数的取值范围是故选点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.6、B【解析】由以及,可得,即得,再根据基本不等式即可求的取值范围.【详解】解:,不妨设,若,由,得:,即与矛盾;同理,也可导出矛盾,故,,即,而,即,即,当且仅当,即时等号成立,又,故,即的取值范围是.故选:B.7、C【解析】要使函数有意义,需满足解得,所以函数的定义域为考点:求函数的定义域【易错点睛】本题是求函数的定义域,注意分母不能为0,同时本题又将对数的运算,交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.学生很容易忽略,造成失误,注意在对数函数中,真数一定是正数,负数和零无意义考点:求函数的定义域8、A【解析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.9、B【解析】根据函数的解析式,得出函数的单调性,把不等式,转化为相应的不等式组,即可求解.【详解】由题意,函数,可得当时,,当时,函数在单调递增,且,要使得,则,解得,即不等式的解集为,故选:B.【点睛】思路点睛:该题主要考查了函数的单调性的应用,解题思路如下:(1)根据函数的解析式,得出函数单调性;(2)合理利用函数的单调性,得出不等式组;(3)正确求解不等式组,得到结果.10、A【解析】利用三角函数的定义可求得结果.【详解】由三角函数的定义可得sinα-故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:12、【解析】由题意,利用复合函数的单调性,对数函数、二次函数的性质,求得的范围【详解】解:函数在上单调递增,函数在上单调递增,且,,解得,即,故答案:13、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:014、##【解析】根据题意得到,求出的值,进而代入数据即可求出结果.【详解】由题意可知,即,所以,即,所以,因此,故答案为:.15、【解析】首先利用余弦定理求得的长度,然后结合三角形的特征确定这个二面角大小即可.【详解】由已知可得为所求二面角的平面角,设等腰直角的直角边长度为,则,由余弦定理可得:,则在中,,即所求二面角大小是.故答案为:16、1【解析】根据分段函数的定义即可求解.【详解】解:因为函数,所以,所以,故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);;(3).【解析】(1)根据给定函数图象依次求出,再代入作答.(2)由(1)的结论结合正弦函数的性质求解作答.(3)在的条件下,求出(1)中函数的相位范围,再利用正弦函数的性质计算作答.【小问1详解】观察图象得:,令函数周期为,则,,由得:,而,于是得,所以函数的解析式是:.【小问2详解】由(1)知,函数的最小正周期,由解得:,所以函数的最小正周期是,单调递减区间是.【小问3详解】由(1)知,当时,,则当,即时,当,即时,,所以函数在上的值域是.【点睛】思路点睛:涉及求正(余)型函数在指定区间上的值域、最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.18、(1)(2)【解析】(1)根据为等边三角形得出,(2)代入弧长公式和面积公式计算.【详解】(1)由于圆的半径为,弦的长为,所以为等边三角形,所以.(2)因为,所以.,又,所以.【点睛】本题主要考查了扇形的相关知识点,弦长、弧长、面积等,属于基础题,解题的关键是在于公式的熟练运用.19、(1)(2)当时,选A家俱乐部合算,当时,两家俱乐部一样合算,当时,选B家俱乐部合算【解析】(1)根据题意求出函数的解析式即可;(2)通过讨论x的范围,判断f(x)和g(x)的大小,从而比较结果即可【详解】由题意,,;时,,解得:,即当时,,当时,,当时,;当时,,故当时,选A家俱乐部合算,当时,两家俱乐部一样合算,当时,选B家俱乐部合算【点睛】本题考查了函数的应用,考查分类讨论思想,转化思想,是一道常规题20、(1);(2)最大值为,最小值为.【解析】(1)展开两角差的余弦,再由辅助角公式化简,利用周期公式求周期;(2)由x的范围求出相位的范围,再由正弦函数的有界性可求函数在区间上的最大值和最小值.【小问1详解】,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论