版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.农业农村部于2021年2月3日发布信息:全国按照主动预防、内外结合、分类施策、有效处置的总体要求,全面排查蝗灾隐患.为了做好蝗虫防控工作,完善应急预案演练,专家假设蝗虫的日增长率为6%,最初有只,则大约经过()天能达到最初的1200倍.(参考数据:,,,)A.122 B.124C.130 D.1362.设,则A. B.C. D.3.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米4.一正方体的六个面上用记号笔分别标记了一个字,已知其表面展开图如图所示,则在原正方体中,互为对面的是()A.西与楼,梦与游,红与记B.西与红,楼与游,梦与记C.西与楼,梦与记,红与游D.西与红,楼与记,梦与游5.将函数的图象向左平移个单位后得到的图象关于轴对称,则正数的最小值是()A. B.C. D.6.若实数,满足,则关于的函数图象的大致形状是()A. B.C. D.7.角的终边经过点,则的值为()A. B.C. D.8.若||=1,||=2,||=,则与的夹角的余弦值为()A. B.C. D.9.已知向量,,则在方向上的投影为A. B.8C. D.10.已知扇形OAB的周长为12,圆心角大小为,则该扇形的面积是()cm.A.2 B.3C.6 D.911.如图,在正方体中,分别为的中点,则异面直线与所成的角等于A. B.C. D.12.已知集合,,若,则A. B.C. D.二、填空题(本大题共4小题,共20分)13.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”14.已知正数x、y满足x+=4,则xy的最大值为_______.15.函数的零点为_________________.16.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________三、解答题(本大题共6小题,共70分)17.已知函数.(1)判断函数在上的单调性,并用定义证明;(2)记函数,证明:函数在上有唯一零点.18.已知函数是定义域为的奇函数,当时,.(1)求出函数在上解析式;(2)若与有3个交点,求实数的取值范围.19.已知集合,集合(1)当时,求;(2)当时,求m的取值范围20.已知函数是指数函数(1)求的解析式;(2)若,求的取值范围21.已知的图象上相邻两对称轴的距离为.(1)若,求的递增区间;(2)若时,若的最大值与最小值之和为5,求的值.22.下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时自变量x的集合,并求出最大值、最小值.(1),;(2),.
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】设经过天后蝗虫数量达到原来的倍,列出方程,结合对数的运算性质即可求解【详解】由题意可知,蝗虫最初有只且日增长率为6%;设经过n天后蝗虫数量达到原来的1200倍,则,∴,∴,∵,∴大约经过122天能达到最初的1200倍.故选:A.2、B【解析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小3、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B4、B【解析】将该正方体折叠,即可判断对立面的字.【详解】以红为底,折叠正方体后,即可判断出:西与红,楼与游,梦与记互为对面.故选:B【点睛】本题考查了空间正方体的结构特征,展开图与正方体关系,属于基础题.5、A【解析】图象关于轴对称,则其为偶函数,根据三角函数的奇偶性即可求解.【详解】将的图象向左平移个单位后得到,此时图象关于轴对称,则,则,当时,取得最小值故选:A.6、B【解析】利用特殊值和,分别得到的值,利用排除法确定答案.【详解】实数,满足,当时,,得,所以排除选项C、D,当时,,得,所以排除选项A,故选:B.【点睛】本题考查函数图像的识别,属于简单题.7、D【解析】根据三角函数定义求解即可.【详解】因为角的终边经过点,所以,,所以.故选:D8、B【解析】由题意把||两边平方,结合数量积的定义可得【详解】||=1,||=2,与的夹角θ,∴||27,∴12+2×1×2×cosθ+22=7,解得cosθ故选:B9、D【解析】依题意有投影为.10、D【解析】设扇形的半径和弧长,根据周长和圆心角解方程得到,再利用扇形面积公式计算即得结果.【详解】设扇形OAB的半径r,弧长l,则周长,圆心角为,解得,故扇形面积为.故选:D11、B【解析】取的中点,则由三角形的中位线的性质可得平行且等于的一半,故或其补角即为异面直线与所成的角.设正方体的棱长为1,则,,故为等边三角形,故∠EGH=60°考点:空间几何体中异面直线所成角.【思路点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角,是解题的关键,体现了等价转化的数学思想.取的中点,由三角形的中位线的性质可得或其补角即为异面直线与所成的角.判断为等边三角形,从而求得异面直线与所成的角的大小12、A【解析】利用两个集合的交集所包含的元素,求得的值,进而求得.【详解】由于,故,所以,故,故选A.【点睛】本小题主要考查两个集合交集元素的特征,考查两个集合的并集的概念,属于基础题.二、填空题(本大题共4小题,共20分)13、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.14、8【解析】根据,利用基本不等式即可得出答案.【详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.15、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.16、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线三、解答题(本大题共6小题,共70分)17、(1)在上单调递增,证明见解析;(2)证明见解析.【解析】(1)根据题意,结合作差法,即可求证;(2)根据题意,结合单调性与零点存在性定理,即可求证.【小问1详解】函数在上单调递增.证明:任取,则,因为,所以,所以,即,因此,故函数在上单调递增.【小问2详解】证明:因为,,所以由函数零点存在定理可知,函数在上有零点,因为和都在上单调递增,所以函数在上单调递增,故函数在上有唯一零点.18、(1);(2).【解析】(1)利用函数的奇偶性求出函数的解析式即可(2)与图象交点有3个,画出图象观察,求得实数的取值范围【详解】(1)①由于函数是定义域为的奇函数,则;②当时,,因为是奇函数,所以.所以.综上:.(2)图象如下图所示:单调增区间:单调减区间:.因为方程有三个不同的解,由图象可知,,即19、(1);(2).【解析】(1)利用集合的交运算求即可.(2)根据已知,由集合的交集结果可得,即可求m的取值范围【小问1详解】由题设,,而,∴.【小问2详解】由,显然,∴,可得.20、(1)(2)【解析】(1)由指数函数定义可直接构造方程组求得,进而得到所求解析式;(2)将不等式化为,根据对数函数单调性和定义域要求可构造不等式组求得结果.【小问1详解】为指数函数,,解得:,.【小问2详解】由(1)知:,,解得:,的取值范围为.21、(1)增区间是[kπ-,kπ+],k∈Z(2)【解析】首先根据已知条件,求出周期,进而求出的值,确定出函数解析式,由正弦函数的递增区间,,即可求出的递增区间由确定出的函数解析式,根据的范围求出这个角的范围,利用正弦函数的图象与性质即可求出函数的最大值,即可得到的值解析:已知由,则T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ则-+kπ≤x≤+kπ故f(x)的增区间是[kπ-,kπ+],k∈Z(2)当x∈[0,]时,≤2x+≤∴sin(2x+)∈[-,1]∴∴点睛:这是一道求三角函数递增区间以及利用函数在某区间的最大值求得参数的题目,主要考查了两角和的正弦函数公式,正弦函数的单调性,以及正弦函数的定义域和值域,解题的关键是熟练掌握正弦函数的性质,属于中档题22、(1)有最大值、最小值.见解析(2)有最大值、最小值.见解析【解析】(1)函数有最大最小值,使函数,取得最大值最小值的x的集合,就是使函数,取得最大值最小值的x的集合;(2)令,使函数,取得最大值的x的集合,就是使,取得最小值的z的集合,使函数,取得最小值的x的集合,就是使,取得最大值的z的集合.【详解】解:容易知道,这两个函数都有最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《材料成形设计综合实验》实验教学大纲
- 经济贸易毕业论文:中国OFDI发展史
- 玉溪师范学院《女性社会工作》2023-2024学年第一学期期末试卷
- 2024年磷铁项目评估分析报告
- 《机械零件的三坐标检测》课程框架
- 《开发和利用资源促进园本课程建设》课题方案
- 采购合同诉讼费收费标准
- 爆破监理延期合同
- 糖尿病新生儿护理课件
- 07 C简谐运动的描述 中档版2025新课改-高中物理-选修第1册(21讲)
- 2024-2030年中国农业卫星数据服务行业发展战略与投资规划分析报告
- 江苏省南京市鼓楼区2024-2025学年七年级上学期期中数学试卷(含答案解析)
- 银行办公大楼物业服务投标方案投标文件(技术方案)
- 网络信息安全管理作业指导书
- (一模)宁波市2024学年第一学期高考模拟考试 化学试卷(含答案)
- GB/T 44481-2024建筑消防设施检测技术规范
- 人教版七年级生物上册第二单元第二章第二节脊椎动物二两栖动物和爬行动物课件
- 中国医学科学院肿瘤医院医用直线加速器维保项目招标文件
- 2024年度陕西省安全员之A证(企业负责人)能力提升试卷A卷附答案
- 泰康保险在线测评真题
- 初中道法教学经验交流会发言稿范文
评论
0/150
提交评论