北京市东城区市级名校2022年高一上数学期末达标检测试题含解析_第1页
北京市东城区市级名校2022年高一上数学期末达标检测试题含解析_第2页
北京市东城区市级名校2022年高一上数学期末达标检测试题含解析_第3页
北京市东城区市级名校2022年高一上数学期末达标检测试题含解析_第4页
北京市东城区市级名校2022年高一上数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为A. B.C. D.2.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④3.已知幂函数的图象过点,若,则实数的值为()A. B.C. D.44.在中,如果,则角A. B.C. D.5.设函数的值域为R,则实数a的取值范围是()A.(-∞,1] B.[1,+∞)C.(-∞,5] D.[5,+∞)6.已知实数a、b,满足,,则关于a、b下列判断正确的是()A.a<b<2 B.b<a<2C.2<a<b D.2<b<a7.为了得到函数的图象,可以将函数的图象A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.下列函数中,在其定义域内单调递减的是()A. B.C. D.9.四名学生按任意次序站成一排,若不相邻的概率是()A. B.C. D.10.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图,若集合,,则图中阴影部分表示的集合为___12.已知命题:,都有是真命题,则实数取值范围是______13.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________14.函数的部分图象如图所示.则函数的解析式为______15.已知函数,R的图象与轴无公共点,求实数的取值范围是_________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知四棱锥P-ABCD的体积为,其三视图如图所示,其中正视图为等腰三角形,侧视图为直角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.17.设函数.(1)当时,若对于,有恒成立,求取值范围;(2)已知,若对于一切实数恒成立,并且存在,使得成立,求的最小值.18.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.19.如图,在四边形中,,,,为等边三角形,是的中点.设,.(1)用,表示,,(2)求与夹角的余弦值.20.某学校高一学生有1000名学生参加一次数学小测验,随机抽取200名学生的测验成绩得如图所示的频率分布直方图:(1)求该学校高一学生随机抽取的200名学生的数学平均成绩和标准差(同一组中的数据用该组区间的中点值做代表);(2)试估计该校高一学生在这一次的数学测验成绩在区间之内的概率是多少?测验成绩在区间之外有多少位学生?(参考数据:)21.等腰直角三角形中,,为的中点,正方形与三角形所在的平面互相垂直(Ⅰ)求证:平面;(Ⅱ)若,求点到平面的距离

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】得到的偶函数解析式为,显然【考点定位】本题考查三角函数的图象和性质,要注意三角函数两种变换的区别,选择合适的值通过诱导公式把转化为余弦函数是考查的最终目的.2、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D3、D【解析】根据已知条件,推出,再根据,即可得出答案.【详解】由题意得:,解得,所以,解得:,故选:D【点睛】本题考查幂函数的解析式,属于基础题.4、C【解析】由特殊角的三角函数值结合在△ABC中,可求得A的值;【详解】,又∵A∈(0,π),∴故选C.【点睛】本题考查了特殊角的三角函数值及三角形中角的范围,属于基础题.5、B【解析】分段函数中,根据对数函数分支y=log2x的值域在(1,+∞),而函数的值域为R,可知二次函数y=-x2+a的最大值大于等于1,即可求得a的范围【详解】x>2时,y=log2x>1∴要使函数的值域为R,则y=-x2+a在x≤2上的最大值a大于等于1即,a≥1故选:B【点睛】本题考查了对数函数的值域,由函数的值域及所得对数函数的值域,判断二次函数的的值域范围进而求参数范围6、D【解析】先根据判断a接近2,进一步对a进行放缩,,进而通过对数运算性质和基本不等式可以判断a>2;根据b的结构,构造函数,得出函数的单调性和零点,进而得到a,b的大小关系,最后再判断b和2的大小关系,最终得到答案.【详解】.构造函数:,易知函数是R上的减函数,且,由,可知:,又,∴,则a>b.又∵,∴a>b>2故选:D.【点睛】对数函数式比较大小通常借助中间量,除了0和1之外,其它的中间量需要根据题目进行分析,中间会用到指对数的运算性质和放缩法;另外,构造函数利用函数的单调性比较大小是比较常用的一种方法,需要我们对式子的结构进行仔细分析,平常注意归纳总结.7、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.8、B【解析】根据函数的单调性确定正确选项【详解】在上递增,不符合题意.在上递减,符合题意.在上有增有减,不符合题意.故选:B9、B【解析】利用捆绑法求出相邻的概率即可求解.【详解】四名学生按任意次序站成一排共有,相邻的站法有,相邻的的概率,故不相邻的概率是.故选:B【点睛】本题考查了排列数以及捆绑法在排列中的应用,同时考查了古典概型的概率计算公式.10、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】图像阴影部分对应的集合为,,故,故填.12、【解析】由于,都有,所以,从而可求出实数的取值范围【详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:13、【解析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:14、【解析】由图象可得出函数的最小正周期,可求得的值,再由结合的取值范围可求得的值,即可得出函数的解析式.【详解】函数的最小正周期为,则,则,因为且函数在处附近单调递减,则,得,因,所以.所以故答案为:.15、【解析】令=t>0,则g(t)=>0对t>0恒成立,即对t>0恒成立,再由基本不等式求出的最大值即可.【详解】,R,令=t>0,则f(x)=g(t)=,由题可知g(t)在t>0时与横轴无公共点,则对t>0恒成立,即对t>0恒成立,∵,当且仅当,即时,等号成立,∴,∴.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)【解析】(1)根据四棱锥的体积得PA=,进而得正视图的面积;(2)过A作AE∥CD交BC于E,连接PE,确定四个侧面积面积S△PAB,S△PAD,S△PCD,S△PBC求和即可.试题解析:(1)如图所示四棱锥P-ABCD的高为PA,底面积为S=·CD=×1=∴四棱锥P-ABCD的体积V四棱锥P-ABCD=S·PA=×·PA=,∴PA=∴正视图的面积为S=×2×=.(2)如图所示,过A作AE∥CD交BC于E,连接PE.根据三视图可知,E是BC的中点,且BE=CE=1,AE=CD=1,且BC⊥AE,AB=又PA⊥平面ABCD,∴PA⊥BC,PA⊥DC,PD=,∴BC⊥面PAE,∴BC⊥PE,又DC⊥AD,∴DC⊥面PAD,∴DC⊥PD,且PA⊥平面ABCD.∴PA⊥AE,∴PE2=PA2+AE2=3.∴PE=.∴四棱锥P-ABCD的侧面积为S=S△PAB+S△PAD+S△PCD+S△PBC=··+··1+·1·+·2·=.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.17、(1)(2)【解析】(1)据题意知,把不等式的恒成立转化为恒成立,设,则,根据二次函数的性质,求得函数的最大致,即可求解.(2)由题意,根据二次函数的性质,求得,进而利用基本不等式,即可求解.【详解】(1)据题意知,对于,有恒成立,即恒成立,因此,设,所以,函数在区间上是单调递减的,,(2)由对于一切实数恒成立,可得,由存在,使得成立可得,,,当且仅当时等号成立,【点睛】本题主要考查了恒成立问题的求解,以及基本不等式求解最值问题,其中解答中掌握利用分离参数法是求解恒成立问题的重要方法,再合理利用二次函数的性质,合理利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18、(1);(2)或;(3)【解析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【点睛】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率19、(1),;(2).【解析】(1)利用向量的线性运算即平面向量基本定理确定,与,的关系;(2)解法一:利用向量数量积运算公式求得向量夹角余弦值;解法二:建立平面直角坐标系,利用数量积的坐标表示确定向量夹角余弦值.【详解】解法一:(1)由图可知.因为E是CD的中点,所以.(2)因为,为等边三角形,所以,,所以,所以,.设与的夹角为,则,所以在与夹角的余弦值为.解法二:(1)同解法一.(2)以A为原点,AD所在直线为x轴,过A且与AD垂直的直线为y轴建立平面直角坐标系,则,,,.因为E是CD的中点,所以,所以,,所以,.设与的夹角为,则,所以与夹角的余弦值为.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用20、(1)平均数,样本标准差.(2)概率为0.9356,全校测验成绩在区间之外约有64(人)【解析】(1)根据频率分布直方图中平均数小矩形底边中点乘以小矩形的面积之和;利用方差公式可求方差,进而可求标准差.(2)由(1)知,由频率分布直方图求出的概率即可求解.【详解】(1)数学成绩的样本平均数为:,数学成绩的样本方差为:.所以估计这批产品质量指标值的样本平均数,样本标准差.(2)由(1)知,则,所以(人)所以估计该学校在这一次的数学测验中成绩在区间之内的概率为0.9356,全校测验成绩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论