高等数学-第六章_第1页
高等数学-第六章_第2页
高等数学-第六章_第3页
高等数学-第六章_第4页
高等数学-第六章_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第五章定积分第一节定积分的概念一、问题的提出二、定积分的定义三、存在定理四、几何意义五、小结abxyo实例1

(求曲边梯形的面积)一、问题的提出abxyoabxyo用矩形面积近似取代曲边梯形面积显然,小矩形越多,矩形总面积越接近曲边梯形面积.(四个小矩形)(九个小矩形)观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.播放曲边梯形如图所示,曲边梯形面积的近似值为曲边梯形面积为实例2

(求变速直线运动的路程)思路:把整段时间分割成若干小段,每小段上速度看作不变,求出各小段的路程再相加,便得到路程的近似值,最后通过对时间的无限细分过程求得路程的精确值.(1)分割部分路程值某时刻的速度(2)求和(3)取极限路程的精确值二、定积分的定义定义被积函数被积表达式积分变量记为积分上限积分下限积分和注意:定理1定理2三、存在定理曲边梯形的面积曲边梯形的面积的负值四、定积分的几何意义几何意义:例1

利用定义计算定积分解例2

利用定义计算定积分解五、小结1.定积分的实质:特殊和式的极限.2.定积分的思想和方法:分割化整为零求和积零为整取极限精确值——定积分求近似以直(不变)代曲(变)取极限观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.观察下列演示过程,注意当分割加细时,矩形面积和与曲边梯形面积的关系.

第二节定积分的性质、中值定理一、基本内容二、小结对定积分的补充规定:说明

在下面的性质中,假定定积分都存在,且不考虑积分上下限的大小.一、基本内容证(此性质可以推广到有限多个函数作和的情况)性质1证性质2补充:不论的相对位置如何,上式总成立.例若(定积分对于积分区间具有可加性)则性质3证性质4性质5解令于是性质5的推论:证(1)证说明:

可积性是显然的.性质5的推论:(2)证(此性质可用于估计积分值的大致范围)性质6解解证由闭区间上连续函数的介值定理知性质7(定积分中值定理)积分中值公式使即积分中值公式的几何解释:解由积分中值定理知有使1.定积分的性质(注意估值性质、积分中值定理的应用)2.典型问题(1)估计积分值;(2)不计算定积分比较积分大小.二、小结

第三节微积分基本公式一、问题的提出二、积分上限函数及其导数三、牛顿—莱布尼茨公式发四、小结思考题变速直线运动中位置函数与速度函数的联系变速直线运动中路程为另一方面这段路程可表示为一、问题的提出考察定积分记积分上限函数二、积分上限函数及其导数积分上限函数的性质证由积分中值定理得定理2(原函数存在定理)定理的重要意义:(1)肯定了连续函数的原函数是存在的.(2)初步揭示了积分学中的定积分与原函数之间的联系.定理3(微积分基本公式)证三、牛顿—莱布尼茨公式令令牛顿—莱布尼茨公式微积分基本公式表明:注意求定积分问题转化为求原函数的问题.例4求

原式例5设

,求.解解例6求

解解面积3.微积分基本公式1.积分上限函数2.积分上限函数的导数四、小结牛顿-莱布尼茨公式沟通了微分学与积分学之间的关系.

第四节定积分的换元积分法一、换元公式二、小结思考题定理一、换元公式证应用换元公式时应注意:(1)(2)例1计算解令例2计算解几个特殊积分、定积分的几个等式定积分的换元法二、小结

第五节定积分的分部积分公式一、分部积分公式二、小结定积分的分部积分公式推导一、分部积分公式例1

计算解令则例2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论