版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NPandComputational
Intractability叶德仕yedeshigmail1NPandComputational
Intractab
DecisionProblemsDecisionproblem.(theanswerissimply"yes"or"no")
Xisasetofstrings.Instance:strings.AlgorithmAsolvesproblemX:A(s)=yesiffs∈X.Optimizationproblems.inwhicheachfeasible(i.e.,"legal")solutionhasanassociatedvalue,andwewishtofindthefeasiblesolutionwiththebestvalue.2DecisionProblemsDecisioPolynomialtime.AlgorithmArunsinpoly-timeifforeverystrings,A(s)terminatesinatmostp(|s|)"steps",wherep(.)issomepolynomial.Certificationalgorithmintuition.Certifierviewsthingsfrom"managerial"viewpoint.Certifierdoesn'tdeterminewhethers∈Xonitsown;rather,itchecksaproposedcertificatetthats∈X.i.e.,certifierverifytheproposedsolutiontandtheinstanceswhetherC(s,t)isyes.3Polynomialtime.AlgorithmArDef.AlgorithmC(s,t)isacertifierforproblemXifforeverystrings,s∈XiffthereexistsastringtsuchthatC(s,t)=yes.NP.Decisionproblemsforwhichthereexistsapoly-timecertifier.Remark.
NPstandsfornondeterministicpoly-time.4Def.AlgorithmC(s,t)isaceCertifiersandCertificates:
Composite(合数)COMPOSITES.Givenanintegers,isscomposite?Certificate.Anontrivialfactortofs.Notethatsuchacertificate
existsiffsiscomposite.Moreover|t|≤|s|.Certifier.booleanC(s,t){if(t≤1ort≥s)
returnfalseelseif(sisamultipleoft)
returntrueelse
returnfalse}5CertifiersandCertificateExampleInstance.
s=437,669.Certificate.
t=541or809.Conclusion.
COMPOSITESisinNP.6ExampleInstance.s=437,66
CertifiersandCertificates:
3-SatisfiabilitySAT.GivenaCNFformula,isthereasatisfyingassignment?Certificate.
Anassignmentoftruthvaluestothenbooleanvariables.Certifier.Checkthateachclausein
hasatleastonetrueliteral.
Instance:Certificate:Conclusion.
SATisinNP.7CertifiersandCertificat
CertifiersandCertificates:
HamiltonianCycleHAM-CYCLE.GivenanundirectedgraphG=(V,E),doesthereexista
simplecycleCthatvisitseverynode?Certificate.Apermutationofthennodes.Certifier.CheckthatthepermutationcontainseachnodeinVexactly
once,andthatthereisanedgebetweeneachpairofadjacentnodesin
thepermutation.Conclusion.HAM-CYCLEisinNP.8CertifiersandCertifiP,NP,EXPP.Decisionproblemsforwhichthereisapoly-timealgorithm.EXP.Decisionproblemsforwhichthereisanexponential-timealgorithm.NP.Decisionproblemsforwhichthereisapoly-timecertifier.9P,NP,EXPP.DecisionproblemsClaim.
Pf.ConsideranyproblemXinP.
Bydefinition,thereexistsapoly-timealgorithmA(s)thatsolvesX.Certificate:certifierC(s,t)=A(s).Claim.
Pf.ConsideranyproblemXinNP.Bydefinition,thereexistsapoly-timecertifierC(s,t)forX.
Tosolveinputs,runC(s,t)onallstringstwith|t|≤p(|s|).Returnyes,ifC(s,t)returnsyesforanyofthese.!10Claim.10TheMainQuestion:
PVersusNPDoesP=NP?[Cook1971,Edmonds,Levin,Yablonski,Gödel]Isthedecisionproblemaseasyasthecertificationproblem?Clay$1millionprize.EXPNPPEXPP=NPIfP=NPIfP≠NP11TheMainQuestion:
PVersusNAformual-language
FrameworkAnalphabet
Σisafinitesetofsymbols.Alanguage
LoverΣisanysetofstringsmadeupofsymbolsfromΣ.Forexample,Σ={0,1},
L={10,11,101,111,1011,1101,10001,...}ListhelanguageofbinaryrepresentationsofprimenumbersDenote
empty
stringbyε
Denote
empty
languagebyØ12Aformual-language
FrameworkAThelanguageofallstringsoverΣisdenotedΣ*.
ForexampleΣ={0,1},thenΣ*={ε,0,1,00,01,10,11,000,...}isthesetofallbinarystrings.EverylanguageLoverΣisasubsetofΣ*.
13ThelanguageofallstringsovSet-theoretic
operationscomplementofLbyΣ*-L.
TheconcatenationoftwolanguagesL1andL2isthelanguageL={x1x2:x1∈L1andx2∈L2}.TheclosureorKleenestarofalanguageListhelanguageL*={ε}∪L∪L2∪L3∪···,whereLkisthelanguageobtainedbyconcatenatingLtoitselfktimes.14Set-theoretic
operationscompDecisionproblem
andlanguagethesetofinstancesforanydecisionproblemQissimplythesetΣ*,whereΣ={0,1}.
SinceQisentirelycharacterizedbythoseprobleminstancesthatproducea1(yes)answer,wecanviewQasalanguageLoverΣ={0,1},where
L={x∈Σ*:Q(x)=1}.Example:PATH={〈G,u,v,k〉:G=(V,E)isanundirectedgraph,u,v∈V,k≥0isaninteger,andthereexistsapathfromutovinGconsistingofatmostkedges}.15Decisionproblem
andlanguageWesaythatanalgorithmA
acceptsastringx∈{0,1}*if,giveninputx,thealgorithm'soutputA(x)is1.ThelanguageacceptedbyanalgorithmAisthesetofstringsL={x∈{0,1}*:A(x)=1}AnalgorithmA
rejectsastringxifA(x)=0.AlanguageLisdecidedbyanalgorithmAifeverybinarystringin
LisacceptedbyAandeverybinarystringnotinLisrejectedbyA.
16WesaythatanalgorithmAaccAlanguageLisacceptedinpolynomialtimebyanalgorithmAifitisacceptedbyAandifinadditionthereisaconstantksuchthatforanylength-nstringx∈L,algorithmAacceptsxintimeO(nk).
AlanguageLisdecidedinpolynomialtimebyanalgorithmAifthereisaconstantksuchthatforanylength-nstringx∈{0,1}*,thealgorithmcorrectlydecideswhetherx∈LintimeO(nk).
Toacceptalanguage,analgorithmneedonlyworryaboutstringsinL,buttodecidealanguage,itmustcorrectlyacceptorrejecteverystringin{0,1}*.17AlanguageLisacceptedinpoClassPP={L⊆{0,1}*:thereexistsanalgorithmAthatdecides
Linpolynomialtime}
18ClassPP={L⊆{0,1}*:therPolynomial-time
verificationForexample,supposethatforagiveninstance〈G,u,v,k〉ofthedecisionproblemPATH,Wearealsogivenapathpfromutov.
Wecaneasilycheckwhetherthelengthofpisatmostk.So,wecanviewpasa"certificate"thattheinstanceindeedbelongstoPATH.19Polynomial-time
verificationVerificationalgorithmsdefineaverificationalgorithmasbeingatwo-argumentalgorithmA,whereoneargumentisanordinaryinputstringxandtheotherisabinarystringycalledacertificate.
Atwo-argumentalgorithmA
verifiesaninputstringxifthereexistsacertificateysuchthatA(x,y)=1.ThelanguageverifiedbyaverificationalgorithmAisL={x∈{0,1}*:thereexistsy∈{0,1}*suchthatA(x,y)=1}.20VerificationalgorithmsClassNPThecomplexityclass
NPistheclassoflanguagesthatcanbeverifiedbyapolynomial-timealgorithmMoreprecisely,alanguageLbelongstoNPifandonlyifthereexistatwo-inputpolynomial-timealgorithmAandconstantcsuchthatL={x∈{0,1}*:thereexistsacertificateywith|y|=O(|x|c)suchthatA(x,y)=1}.WesaythatalgorithmA
verifieslanguageL
inpolynomialtime.
21ClassNPThecomplexityclassNclassco-NPThatis,doesL∈NPimplyWecandefinethecomplexityclass
co-NPasthesetoflanguagesLsuchthatP=NP=co-NPNP=co-NPPco-NPP=NP∩co-NPNPco-NPNP∩co-NPNPP22classco-NPThatis,doesL∈NP-completeness
andreducibilityPolynomialTransformationDef.ProblemX
polynomialreduces(Cook)toproblemYifarbitraryinstancesofproblemXcanbesolvedusing:Polynomialnumberofstandardcomputationalsteps,plusPolynomialnumberofcallstooraclethatsolvesproblemY.Def.ProblemX
polynomialtransforms(Karp)toproblemYifgivenanyinputxtoX,wecanconstructaninputyinpolynomialtimesuchthatxisayesinstanceofXiffyisayesinstanceofY.23NP-completeness
andreducibilwesaythatalanguageL1
ispolynomial-timereducibletoalanguageL2
writtenL1≤P
L2,ifthereexistsapolynomial-timecomputablefunctionf:{0,1}*→{0,1}*suchthatforallx{0,1}*,Wecallthefunctionfthereductionfunction,andapolynomial-timealgorithmFthatcomputesfiscalledareductionalgorithm.24wesaythatalanguageL1ispNP-CompleteNP-complete.AproblemYinNPwiththepropertythatforeveryproblemXinNP,X≤PY.AlanguageL⊆{0,1}*isNP-completeifL∈NP,andL′≤P
LforeveryL∈NP.25NP-CompleteNP-complete.AprobLemma.IfL1,L2⊆{0,1}*arelanguagessuchthatL1≤P
L2,thenL2∈PimpliesL1∈P.FA2xf(x)A126Lemma.IfL1,L2⊆{0,1}*areTheorem.IfanyNP-completeproblemispolynomial-timesolvable,thenP=NP.Pf.SupposethatL∈PandalsothatL∈NPC.ForanyL′∈NP,wehaveL′≤P
Lbyproperty2ofthedefinitionofNP-completeness.Thus,byaboveLemma,wealsohavethatL′∈P,whichprovesthetheorem.NPPNPCIfP≠NP27Theorem.IfanyNP-completeprCircuitSatisfiabilityCIRCUIT-SAT.GivenacombinationalcircuitbuiltoutofAND,OR,andNOTgates,isthereawaytosetthecircuitinputssothattheoutputis1?10???Yes:101Output28CircuitSatisfiabilityCIRCUITThe"First"
NP-CompleteProblemTheorem.CIRCUIT-SATisNP-complete.[Cook1971,Levin1973]Pf.Thecircuit-satisfiabilityproblembelongstotheclassNP.showthateverylanguageinNPispolynomial-timereducibletoCIRCUIT-SAT.29The"First"
NP-CompleteProblEstablishingNP-CompletenessMethodforshowingthataproblemYisNP-completeShowthatYisinNP.ChooseanNP-completeproblemX.X≤P
Y
Justification.IfX
isaproblemsuchthatY
≤P
XforsomeY∈NPC,thenXisNP-hard.Moreover,ifX∈NP,thenL∈NPC.30EstablishingNP-3-SATisNP-CompleteTheorem.3-SATisNP-complete.Pf.SufficestoshowthatCIRCUIT-SAT≤P3-SATsince3-SATisinNP.LetKbeanycircuitCreatea3-SATvariablexiforeachcircuitelementi.x5x4x3x1x2x0313-SATisNP-CompleteThProof.Con.32Proof.Con.32Proof.Con.Finalstep:turnclausesoflength<3intoclausesoflengthexactly3!IfChas3distinctliterals,done.IfChas2distinctliteralsifC=(L1∨L2),theninclude(L1∨L2∨p)∧(L1∨L2∨¬p)IfChasjust1distinctliterall(l∨p∨q)∧(l∨p∨¬q)∧(l∨¬p∨q)∧(l∨¬p∨¬q)
33Proof.Con.Finalstep:turncl3-CNFsatisfiabilityAbooleanformulaisinconjunctivenormalform,orCNF,ifitisexpressedasanANDofclauses,eachofwhichistheORofoneormoreliterals.
3-CNF,ifeachclausehasexactlythreedistinctliterals.
Example:(x1∨¬x1∨¬x2)∧(x3∨x2∨x4)∧(¬x1∨¬x3∨¬x4)343-CNFsatisfiabilityAbooleaTheorem.Satisfiabilityofbooleanformulasin3-conjunctivenormalformisNP-complete.35Theorem.SatisfiabilityofbooThecliqueproblemAcliqueinanundirectedgraphG=(V,E)isasubsetV'⊆Vofvertices,eachpairofwhichisconnectedbyanedgeinE.Inotherwords,acliqueisacompletesubgraphofG.Thesizeofacliqueisthenumberofverticesitcontains.Thecliqueproblemistheoptimizationproblemoffindingacliqueofmaximumsizeinagraph.Asadecisionproblem,weasksimplywhetheracliqueofagivensizekexistsinthegraph.Theformaldefinitionis
CLIQUE={〈G,k〉:Gisagraphwithacliqueofsizek}.36ThecliqueproblemAcliqueiCliqueproblemTheorem.ThecliqueproblemisNP-complete.Pf.CLIQUEisinNP,
foragivengraphG=(V,E),weusethesetV'⊆VofverticesinthecliqueasacertificateforG.CheckingwhetherV'isacliquecanbeaccomplishedinpolynomialtimebycheckingwhether,foreachpairu,v∈V',theedge(u,v)belongstoE.
nextprovethat3-CNF-SAT≤PCLIQUEreductionalgorithm:Letφ=C1∧C2∧···∧Ckbeabooleanformulain3-CNFwithkclauses.
WeshallconstructagraphGsuchthatφissatisfiableifandonlyifGhasacliqueofsizek.
37CliqueproblemTheorem.ThecliConstructofgraphGThegraphG=(V,E)isconstructedasfollows.ForeachclauseCr=(r1,r2,r3),weplaceatripleofverticesvr1,vr2,vr3inV.Weputanedgebetweentwovertices
vri,vsj
ifbothofthefollowinghold:
vri
andvsj
areindifferenttriples,thatis,r≠s,theircorrespondingliteralsareconsistent,thatisriisnotthenegationofsj.Thisgraphcaneasilybecomputedfromφinpolynomialtime38ConstructofgraphGThegraphExampleφ=(x1∨¬x2∨¬x3)∧(¬x1∨x2∨x3)∧(x1∨x2∨x3),
39Exampleφ=(x1∨¬x2∨¬x3)∧Proof.Con.WemustshowthatthistransformationofφintoGisareduction
First,supposethatφhasasatisfyingassignment.TheneachclauseCrcontainsatleastoneliteralrjthatisassigned1.andeachsuchliteralcorrespondstoavertexvrj.Pickingonesuch"true"literalfromeachclauseyieldsasetV'ofkvertices.
WeclaimthatV'isaclique.
Foranytwovertices
vri,vsj
wherer≠s,bothcorrespondingliteralsrirandsjaremappedto1bythegivensatisfyingassignment,andthustheliteralscannotbecomplements.40Proof.Con.WemustshowthattProof.Con.Conversely,supposethatGhasacliqueV'ofsizek.
NoedgesinGconnectverticesinthesametriple,andsoV'containsexactlyonevertexpertriple.Wecanassign1toeachliteral
risuchthatvrj∈V',thenassigning1tobothaliteralanditscomplement
cannothappen,sinceGcontainsnoedgesbetweeninconsistentliterals.Eachclauseissatisfied,andsoφissatisfiedAnyvariablesthatdonotcorrespondtoavertexinthecliquemaybesetarbitrarily
41Proof.Con.Conversely,supposeThevertex-coverproblemAvertexcoverofanundirectedgraphG=(V,E)isasubsetV'⊆Vsuchthatif(u,v)∈E,thenu∈V'orv∈V'(orboth).
AvertexcoverforGisasetofverticesthatcoversalltheedgesinE.Asadecisionproblem,wedefineVERTEX-COVER={〈G,k〉:graphGhasavertexcoverofsizek}.42Thevertex-coveVertex-coverisNPCTheorem.Thevertex-coverproblemisNP-complete.WefirstshowthatVERTEX-COVER∈NP.GivenagraphG=(V,E)andanintegerk.CertificateisthevertexcoverV'⊆Vitself.Theverificationalgorithmaffirmsthat|V'|=k,andthenitchecks,foreachedge(u,v)∈E,thatu∈V'orv∈V'.Thisverificationcanbeperformedstraightforwardlyinpolynomialtime.43Vertex-coverisNPCThThevertex-coverproblemisNP-hardbyshowingthatCLIQUE≤PVERTEX-COVER
Thisreductionisbasedonthenotionofthe"complement"ofagraph.GivenanundirectedgraphG=(V,E),wedefinethecomplementofG,thegraphcontainingexactlythoseedgesthatarenotinG.44Thevertex-coverproblemisNPExample:
complementofG45Example:
complementofG45Vertex-coverThereductionalgorithmtakesasinputaninstance〈G,k〉ofthecliqueproblem.Itcomputesthecomplement,whichiseasilydoneinpolynomialtime.Theoutputofthereductionalgorithmistheinstanceofthevertex-coverproblem.ThegraphGhasacliqueofsizek
ifandonlyifthegraphhasavertexcoverofsize|V|-k.46Vertex-coverThereductionalgoVertex-coverSupposethatGhasacliqueV'⊆Vwith|V'|=k.WeclaimthatV-V'isavertexcoverin.Let(u,v)beanyedgeinĒ.Then,(u,v)∉E,whichimpliesthatatleastoneofuorvdoesnotbelongtoV',sinceeverypairofverticesinV'isconnectedbyanedgeofE.Equivalently,atleastoneofuorvisinV-V‘,whichmeansthatedge(u,v)iscoveredbyV-V'.Hence,thesetV-V',whichhassize|V|-k,formsavertexcoverfor47Vertex-coverSupposethatGhasVertex-covercon.Conversely,supposethathasavertexcoverV'⊆V,where|V'|=|V|-k.Then,forallu,v∈V,if(u,v)∈Ē,thenu∈V'orv∈V'orboth.Forallu,v∈V,ifu∉V'andv∉V',then(u,v)∈E.Inotherword,V-V'isaclique,andithassize|V|-|V'|=k.48Vertex-covercon.Conversely,sHamiltonianCycleHAM-CYCLE:givenanundirectedgraphG=(V,E),doesthereexistasimplecyclethatcontainseverynodeinV.YES:verticesandfacesofadodecahedron.49HamiltonianCycleHAM-CYCLE:giHamiltonianCycleHAM-CYCLE:givenanundirectedgraphG=(V,E),doesthereexistasimplecyclethatcontainseverynodeinV.NO:bipartitegraphwithoddnumberofnodes..50HamiltonianCycleHAM-CYCLE:giDirected
HamiltonianCycleDIR-HAM-CYCLE:givenadigraphG=(V,E),doesthereexistsasimpledirectedcyclethatcontainseverynodeinV?Claim.DIR-HAM-CYCLE≤PHAM-CYCLE.VVinVoutV51Directed
HamiltonianCycleDIR3-SATReducesto
DirectedHamiltonianCycle
Claim.3-SAT
≤PDIR-HAM-CYCLE523-SATReducesto
Di3-SATReducesto
DirectedHamiltonianCycle
Claim.3-SAT
≤PDIR-HAM-CYCLEPf.Givenaninstanceof3-SAT,weconstructaninstanceofDIRHAM-CYCLEthathasaHamiltoniancycleiffissatisfiable.Construction.First,creategraphthathas2n
Hamiltoniancycleswhichcorrespondinanaturalwayto2npossibletruthassignments.Intuition:traversepathifromlefttorightiffsetvariablexi=1.533-SATReducesto
DiHamiltonianPathHAM-CYCLE≤pHAM-PATH:54HamiltonianPathHAM-CYCLE≤pHLongestPathSHORTEST-PATH.GivenadigraphG=(V,E),doesthereexistsasimplepathoflengthatmostkedges?LONGEST-PATH.GivenadigraphG=(V,E),doesthereexistsasimplepathoflengthatleastkedges?55LongestPathSHORTEST-PATH.GivLongestPathClaim.HAM-CYCLE≤pLongest-PathLetG=(V,E)beaninstanceofHAM-CYCLE.Ifthelongest-simple-cycleinGisoflength|V|,theneveryvertexwasvisitedandthusthereisaHamiltoniancycleinG.Reduction:Computethelongest-simple-cycleinG.Ifthelengthofthiscycle=|V|,ThereisaHamiltoniancycle.Else,thereisnoHamiltoniancycle.56LongestPathClaim.HAM-CYCLE≤ThelongestpathIhavebeenhardworkingforsolong.Iswearit'sright,andhemarksitwrong.SomehowI'llfeelsorrywhenit'sdone:GPA2.1IsmorethanIhopefor.Garey,Johnson,Karpandothermen(andwomen)TriedtomakeitorderNlogN.AmIamadfoolIfIspendmylifeingradschool,Foreverfollowingthelongestpath?Woh-oh-oh-oh,findthelongestpath!Woh-oh-oh-oh,findthelongestpath!Woh-oh-oh-oh,findthelongestpath.Woh-oh-oh-oh,findthelongestpath!Woh-oh-oh-oh,findthelongestpath!IfyousaidPisNPtonight,Therewouldstillbepaperslefttowrite,Ihaveaweakness,I'maddictedtocompleteness,AndIkeepsearchingforthelongestpath.ThealgorithmIwouldliketoseeIsofpolynomialdegree,Butit'selusive:NobodyhasfoundconclusiveEvidencethatwecanfindalongestpath.Lyrics.Copyright©1988byDanielJ.Barrett.Music.SungtothetuneofTheLongesttimebyBillyJoel.RecordedbyDanBarrettwhileagradstudentatJohnsHopkinsduringadifficultalgorithmsfinal.57ThelongestpathIhavebeenhThetraveling-salesman
problem(TSP)Traveling-salesmanproblem:Asalesmanspendshistimevisitingncities(ornodes)cyclically.Inonetourhevisitseachcityjustonce,andfinishesupwherehestarted.Inwhatordershouldhevisitthemtominimisethedistancetravelled?Thereisanintegercostc(i,j)totravelfromcityitocityj,58Thetraveling-salesman
proTSP:NPCTheorem.Thetraveling-salesmanproblemisNP-complete.Pf.HAM-CYCLE≤PTSP.LetG=(V,E)beaninstanceofHAM-CYCLE.WeconstructaninstanceofTSPasfollows.WeformthecompletegraphG'=(V,E'),whereE'={(i,j):i,j∈Vandi≠j},andwedefinethecostfunctioncby59TSP:NPCTheorem.ThetravelingProof.graphGhasahamiltoniancycleifandonlyifgraphG'hasatourofcostatmost0.SupposethatgraphGhasahamiltoniancycleh.EachedgeinhbelongstoEandthushascost0inG'.Thus,hisatourinG'withcost0Conversely,supposethatgraphG'hasatourh'ofcostatmost0.SincethecostsoftheedgesinE'are0and1,thecostoftourh'isexactly0andeachedgeonthetourmusthavecost0.Therefore,h'containsonlyedgesinE.Weconcludethath'isahamiltoniancycleingraphG.60Proof.graphGhasahamiltoniNPProblems61NPProblems61Acompendiumof
NPoptimizationproblemsEditors:
PierluigiCrescenzi,andViggoKann
Subeditors:
MagnúsHalldórsson(retired)
GraphTheory:CoveringandPartitioning,SubgraphsandSupergraphs,SetsandPartitions.
MarekKarpinski
GraphTheory:VertexOrdering,NetworkDesign:CutsandConnectivity.
GerhardWoeginger
SequencingandScheduling.nada.kth.se/~viggo/problemlist/62Acompendiumof
NPoptimizatiTheNP-CompletenessColumnDavidJohnson.ACMTRANSACTIONSONALGORITHMS1:1,160-176(2019)63TheNP-CompletenessColumn63OpenProblemOpen:theVisibilityGraphRecognitionproblemisnotevenknowntobeinNP.
VisibilityGraphRecognitionproblem:GivenavisibilitygraphGandaHamiltoniancircuitC,determineinpolynomialtimewhetherthereisasimplepolygonwhosevertexvisibilitygraphisG,andwhoseboundarycorrespondstoC.VisibilityGraph:LetSbeasetofsimplepolygonalobstaclesintheplane,thenthenodesofthevisibilitygraphofarejusttheverticesofS,andthereisanedge(calledavisibilityedge)betweenverticesandiftheseverticesaremutuallyvisible.Asimplepolygonisapolygonwhichdoesnotintersectitselfanywhere.ThesearealsocalledJordanpolygons.64OpenProblemOpen:theVisibiliNPandComputational
Intractability叶德仕yedeshigmail65NPandComputational
Intractab
DecisionProblemsDecisionproblem.(theanswerissimply"yes"or"no")
Xisasetofstrings.Instance:strings.AlgorithmAsolvesproblemX:A(s)=yesiffs∈X.Optimizationproblems.inwhicheachfeasible(i.e.,"legal")solutionhasanassociatedvalue,andwewishtofindthefeasiblesolutionwiththebestvalue.66DecisionProblemsDecisioPolynomialtime.AlgorithmArunsinpoly-timeifforeverystrings,A(s)terminatesinatmostp(|s|)"steps",wherep(.)issomepolynomial.Certificationalgorithmintuition.Certifierviewsthingsfrom"managerial"viewpoint.Certifierdoesn'tdeterminewhethers∈Xonitsown;rather,itchecksaproposedcertificatetthats∈X.i.e.,certifierverifytheproposedsolutiontandtheinstanceswhetherC(s,t)isyes.67Polynomialtime.AlgorithmArDef.AlgorithmC(s,t)isacertifierforproblemXifforeverystrings,s∈XiffthereexistsastringtsuchthatC(s,t)=yes.NP.Decisionproblemsforwhichthereexistsapoly-timecertifier.Remark.
NPstandsfornondeterministicpoly-time.68Def.AlgorithmC(s,t)isaceCertifiersandCertificates:
Composite(合数)COMPOSITES.Givenanintegers,isscomposite?Certificate.Anontrivialfactortofs.Notethatsuchacertificate
existsiffsiscomposite.Moreover|t|≤|s|.Certifier.booleanC(s,t){if(t≤1ort≥s)
returnfalseelseif(sisamultipleoft)
returntrueelse
returnfalse}69CertifiersandCertificateExampleInstance.
s=437,669.Certificate.
t=541or809.Conclusion.
COMPOSITESisinNP.70ExampleInstance.s=437,66
CertifiersandCertificates:
3-SatisfiabilitySAT.GivenaCNFformula,isthereasatisfyingassignment?Certificate.
Anassignmentoftruthvaluestothenbooleanvariables.Certifier.Checkthateachclausein
hasatleastonetrueliteral.
Instance:Certificate:Conclusion.
SATisinNP.71CertifiersandCertificat
CertifiersandCertificates:
HamiltonianCycleHAM-CYCLE.GivenanundirectedgraphG=(V,E),doesthereexista
simplecycleCthatvisitseverynode?Certificate.Apermutationofthennodes.Certifier.CheckthatthepermutationcontainseachnodeinVexactly
once,andthatthereisanedgebetweeneachpairofadjacentnodesin
thepermutation.Conclusion.HAM-CYCLEisinNP.72CertifiersandCertifiP,NP,EXPP.Decisionproblemsforwhichthereisapoly-timealgorithm.EXP.Decisionproblemsforwhichthereisanexponential-timealgorithm.NP.Decisionproblemsforwhichthereisapoly-timecertifier.73P,NP,EXPP.DecisionproblemsClaim.
Pf.ConsideranyproblemXinP.
Bydefinition,thereexistsapoly-timealgorithmA(s)thatsolvesX.Certificate:certifierC(s,t)=A(s).Claim.
Pf.ConsideranyproblemXinNP.Bydefinition,thereexistsapoly-timecertifierC(s,t)forX.
Tosolveinputs,runC(s,t)onallstringstwith|t|≤p(|s|).Returnyes,ifC(s,t)returnsyesforanyofthese.!74Claim.10TheMainQuestion:
PVersusNPDoesP=NP?[Cook1971,Edmonds,Levin,Yablonski,Gödel]Isthedecisionproblemaseasyasthecertificationproblem?Clay$1millionprize.EXPNPPEXPP=NPIfP=NPIfP≠NP75TheMainQuestion:
PVersusNAformual-language
FrameworkAnalphabet
Σisafinitesetofsymbols.Alanguage
LoverΣisanysetofstringsmadeupofsymbolsfromΣ.Forexample,Σ={0,1},
L={10,11,101,111,1011,1101,10001,...}Listhelanguageofbinaryrepresentationsofprimenumb
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- m-PEG-DSPE-sodium-MW-2000-生命科学试剂-MCE
- 广东省珠海市香洲区珠海市紫荆中学2024-2025学年八年级上学期11月期中物理试题(无答案)
- 小学六年级语文教学工作总结
- 客运服务合同
- 《我们的传统节日》校本课程实施方案
- 幼儿园2024春季教研工作总结
- 中学社团活动工作总结
- 小学英语学情分析方案
- 年产万吨黄磷课程设计
- 合伙合同范本(2篇)
- 五年级《欧洲民间故事》知识考试题库(含答案)
- 华为学习项目管理培训课件
- 智慧能源-智慧能源管理平台建设方案
- 教师师德师风培训PPT
- 国家开放大学《老年教育专题》形考任务(1-4)试题及答案解析
- 2023年版-肿瘤内科临床路径
- 食安快线理论考核试题及答案
- 三年级上册道德与法治课件-8.安全记心上(平安出行)-部编版 (共13张PPT)
- 三年级上册数学课件-4.9 商中间或末尾有0的除法丨苏教版 (共13张PPT)
- word精美小升初简历欧式模板
- 创伤骨折急救课件
评论
0/150
提交评论