分子力场简介_第1页
分子力场简介_第2页
分子力场简介_第3页
分子力场简介_第4页
分子力场简介_第5页
已阅读5页,还剩61页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于分子力场简介第一页,共六十六页,2022年,8月28日Interatomicinteractions原子与分子层次上的物质第二页,共六十六页,2022年,8月28日2003年諾貝爾化學獎:

-細胞膜通道之謎

2003年的諾貝爾化學獎,頒給了兩位美國科學家:約翰霍普金斯大學醫學院的阿格雷(PeterAgre)與洛克斐勒大學霍華休斯醫學研究中心的麥金農(RoderickMacKinnon)。他們獲獎的研究都與細胞膜上的通道有關,瑞典皇家科學院在10月8日發佈的新聞稿中指出,阿格雷是因為「發現水通道」與麥金農「在離子通道的結構與機制上的研究」,而共享2003的諾貝爾化學獎。第三页,共六十六页,2022年,8月28日The2003NobelprizeforChemistry2003諾貝爾化學獎頒給了兩位醫生,或許有些奇怪,然而仔細的去瞭解他們所做的工作就會發現,其實他們的研究已經深入到了原子的層次,那不是化學又會是什麼呢!這其實也告訴了眾多對生命科學有興趣的年輕人,其實真正精采的還是在這個化學的層次。

第四页,共六十六页,2022年,8月28日The2003NobelprizeforChemistry水分子通過aquaporinAQP2。由於通道中心的正電荷,如H3O+般帶正電荷的離子會被驅逐,這可避免質子的滲漏。

第五页,共六十六页,2022年,8月28日Waterchannelsincellmembraneswaterpermeationmovieforthe2003NobelprizeinChemistry第六页,共六十六页,2022年,8月28日分子力场分子力场:

根据量子力学的波恩-奥本海默近似,一个分子的能量可以近似看作构成分子的各个原子的空间坐标的函数,简单地讲就是分子的能量随分子构型的变化而变化,而描述这种分子能量和分子结构之间关系的就是分子力场函数。第七页,共六十六页,2022年,8月28日分子力学和分子力场很多情况下,对大分子体系的处理可以完全避免使用量子化学计算。分子力学模拟使用古典力学模型(例如谐振子)描述化合物的能量。分子力学模型的所有常数均通过实验数据或第一原理计算结果得到。参数和函数的优化结果称为分子力场。进行参数化的化合物库对分子力学方法的计算成功与否至关重要。针对某类分子优化的力场只有在应用于同类分子时才可保证得到可信的结果。第八页,共六十六页,2022年,8月28日分子力场定义:Aclassicalforcefieldconsistsof:

1.analyticalfunctionalformsdescribingtheinteractions

2.parametersinthesefunctionalforms

Theforcefieldisfittoexperimentaldatafromasmallsetofmolecules,withthegoalthattheforcefieldwillaccuratelyinterpolateandextrapolatetoothersystems.Theclassicalforcefieldsarefittoreproduceobservablessuchasstructuresandrelativeenergies,sothesignificantquantummechanicaleffects(i.e.covalentbonds)areincludedempirically

第九页,共六十六页,2022年,8月28日分子力场Forcefield

(alsocalledaforcefield)referstothefunctionalformandparametersetsusedtodescribethepotentialenergyofasystemofparticles(typicallybutnotnecessarilyatoms).第十页,共六十六页,2022年,8月28日分子力场分子力场函数为来自实验结果的经验公式,可以讲对分子能量的模拟比较粗糙,但是相比于精确的量子力学从头计算方法,分子力场方法的计算量要小数十倍,而且在适当的范围内,分子力场方法的计算精度与量子化学计算相差无几,因此对大分子复杂体系而言,分子力场方法是一套行之有效的方法。第十一页,共六十六页,2022年,8月28日分子力场分子动力学蒙特卡罗方法分子对接等分子模拟方法中有着广泛的应用.第十二页,共六十六页,2022年,8月28日分子力场Aforcefieldisusedtominimizethebondstretchingenergyofthisethanemolecule.第十三页,共六十六页,2022年,8月28日分子力学Molecularmechanics

referstotheuseofNewtonianmechanicstomodelmolecularsystems.Thepotentialenergyofallsystemsinmolecularmechanicsiscalculatedusingforcefields.Molecularmechanicscanbeusedtostudysmallmoleculesaswellaslargebiologicalsystemsormaterialassemblieswithmanythousandstomillionsofatoms.第十四页,共六十六页,2022年,8月28日第十五页,共六十六页,2022年,8月28日分子力学分子力学,又叫力场方法(forcefieldmethod),目前广泛地用于计算分子的构象和能量。第十六页,共六十六页,2022年,8月28日分子力学分子力学的基本思想-

在分子内部,化学键都有“自然”的键长值和键角值。分子要调整它的几何形状(构象),以使其键长值和键角值尽可能接近自然值,同时也使非键作用(vanderWaals力)处于最小的状态,给出原子核位置的最佳排布。第十七页,共六十六页,2022年,8月28日分子力学分子的经典力学模型-1946,

T.L.Hill提出用vanderWaals作用能和键长、键角的变形能来计算分子的能量,以优化分子的空间构型。Hill指出:“分子内部的空间作用是众所周知的,(1)基团或原子之间靠近时则相互排斥;(2)为了减少这种作用,基团或原子就趋于相互离开,但是这将使键长伸长或键角发生弯曲,又引起了相应的能量升高。最后的构型将是这两种力折衷的结果,并且是能量最低的构型”。

第十八页,共六十六页,2022年,8月28日分子力学分子力学的发展

虽然分子力学的思想和方法在40年代就建立起来了,但是直到50年代以后,随着电子计算机的发展,用分子力学来确定和理解分子的结构和性质的研究才越来越多。直到这时,才可以说分子力学已成为结构化学研究的重要方法之一。

第十九页,共六十六页,2022年,8月28日分子力学分子力学的发展

近几年来,随着现代技术的发展和应用,特别是计算机技术的发展,分子力学方法已不仅能处理一般的中小分子,也不仅主要应用于有机化学领域,而且能处理大分子体系。在其他的一些领域,如生物化学、药物设计、配位化学中,都有了广泛的应用。第二十页,共六十六页,2022年,8月28日分子力学分子力学的基本假设TheBorn-OppenheimerApproximation-原子核的运动与电子的运动可以看成是独立的;分子是一组靠各种作用力维系在一起的原子集合。这些原子在空间上若过于靠近,便相互排斥;但又不能远离,否则连接它们的化学键以及由这些键构成的键角等会发生变化,即出现键的拉伸或压缩、键角的扭变等,会引起分子内部应力的增加。每个真实的分子结构,都是在上述几种作用达到平衡状态的表现。第二十一页,共六十六页,2022年,8月28日分子力学分子的空间能分子力学从几个主要的典型结构参数和作用力出发来讨论分子结构,即用位能函数来表示当键长、键角、二面角等结构参数以及非键作用等偏离“理想”值时分子能量(称为空间能,spaceenergy)的变化。采用优化的方法,寻找分子空间能处于极小值状态时分子的构型。第二十二页,共六十六页,2022年,8月28日分子力学分子的空间能分子的空间能Es可表示为:

Es=Ec+Eb+Et+Enb+…

其中Ec是键的伸缩能,Eb是键角弯曲能,Et是键的二面角扭转能,Enb是非键作用能,它包括vanderWaals作用能,偶极(电荷)作用能、氢键作用能等等。

第二十三页,共六十六页,2022年,8月28日分子力学分子的空间能位能函数描述了各种形式的相互作用力对分子位能的影响,它的有关参数、常数和表达式通常称为力场。对于某个分子来说,空间能是分子构象的函数。由于在分子内部的作用力比较复杂,作用类型也较多;对于不同类型的体系作用力的情况也有差别。第二十四页,共六十六页,2022年,8月28日分子力学分子的空间能第二十五页,共六十六页,2022年,8月28日分子力学分子的力场形式-键能项:键长伸缩能

Morse曲线:V=De{1-exp[-a(r-r0)]}2谐振势函数:V=(k/2)(r-r0)2第二十六页,共六十六页,2022年,8月28日分子力学分子的力场形式-键能项:键长伸缩能

含非谐项的函数:V=(k/2)(r-r0)2[1-k1(r-r0)-k2(r-r0)2-k3(r-r0)3]第二十七页,共六十六页,2022年,8月28日分子力学分子的力场形式-键能项:键角弯曲能

V=(k/2)(-0)2V=(k/2)(-0)2[1-k1(-0)-k2(-0)2-k3(-0)3]键长及键角交叉项:Vb/=(1/2)kr(r-r0)(-0)第二十八页,共六十六页,2022年,8月28日分子力学分子的力场形式-键能项:扭转能

分子内部基团绕化学键的旋转会改变分子的构象,同时也改变了分子的能量状态。用二面角(i)来描述这种运动形式,采用Fourier级数形式表示为:第二十九页,共六十六页,2022年,8月28日分子力学分子的力场形式-键能项:扭转能

一般情况下,由于二面角的扭转对总能量的贡献小于键长和键角的贡献,一般情况下二面角的改变要比键长和键角的变化自由得多。因此在一些处理大分子的力场中常保持键长、键角不变,只考虑二面角及其他的作用而优化整个分子的构象和能量。第三十页,共六十六页,2022年,8月28日分子力学分子的力场形式-非键能项:vanderWaals势

V=Ar-12-Br-6V′=A′exp(B′/r)-C′r-6

一般地说前者节省机时而后者却能更好地描述原子间的非键作用。

第三十一页,共六十六页,2022年,8月28日vanderWaalsL-J势第三十二页,共六十六页,2022年,8月28日分子力学分子的力场形式-非键能项:静电相互作用点电荷,部份电荷第三十三页,共六十六页,2022年,8月28日分子力学分子的力场形式-非键能项:静电相互作用对于原子间的静电作用,作为一级近似,仅考虑永久偶极(i,j

)间的作用Vdipl:

第三十四页,共六十六页,2022年,8月28日分子力学分子的力场形式-氢键V(r)=A/r12-C/r10实例:YETI力场VHB=(A/r12-C/r10)cos2cos4r第三十五页,共六十六页,2022年,8月28日Impropertorsion第三十六页,共六十六页,2022年,8月28日分子力学分子的力场形式-氢键:Charmm力场‘“第三十七页,共六十六页,2022年,8月28日分子力学力场的参数化分子力学力场的性能即它的计算结果的准确性和可靠性主要取决于势能函数和结构参数。这些有关力常数,结构参数的“本征值”的置定过程称为力场的参数化。参数化的过程要在大量的热力学、光谱学实验数据的基础上进行,有时也需要由量子化学计算的结果提供数据。

第三十八页,共六十六页,2022年,8月28日分子力学力场的参数化各类键长、键角的“本征值”一般取自晶体学、电子衍射或其他的谱学数据,键伸缩和角变力常数主要由振动光谱数据确定,扭转力常数经常要从分子内旋转位垒来推算。对于不同的力场不仅力场参数不同,函数形式也可能不同。因此,在将一个力场中的参数应用于另一个力场时应十分小心。一个好的力场不仅能重现已被研究过的实验观察结果,而且能有一定的广泛性,能用于解决未被实验测定过的分子的结构和性质。

第三十九页,共六十六页,2022年,8月28日分子力学力场的参数化-常见的力场及程序

QCFF/PI AWarshel&MlevittMMI/MMPI NLAllingerMM2/MMP2 NLAllingerMM3 NLAllingerECEPP HAScheragaAMBER PKollmanCHARMM MKarplusGROMOS vanGunsterenSYBYL TriposInc.DISCOVER MSIInc.第四十页,共六十六页,2022年,8月28日分子力学力场所存在的问题两个相互作用原子间的诱导偶极的作用会受到其它原子的影响;非键作用势中假定原子为球形,实际上非键作用受原子形状影响,还需考虑孤对电子;谐振势函数不能精确拟合实验数据对于静电作用的处理过于简化。第四十一页,共六十六页,2022年,8月28日分子力学力场的发展趋势考虑原子极化率取用高次项发展含金属的力场第四十二页,共六十六页,2022年,8月28日分子力学力场举例:BondStretching:Eb=k2b(b-b0)2+k3b(b-b0)3+k4b(b-b0)4AngleBending:E=k2(-0)2+k3(-0)3+k4(-0)4Torsion:E=k1(1-cos)+k2(1-cos2)+k3(1-cos3)Non-bond:En=qiqj/r+[2(r*/r)9-3(r*/r)6]第四十三页,共六十六页,2022年,8月28日分子力学力场举例:Bond/BondCoupling:Ebb’=kbb’(b-b0)(b’-b0)Bond/AngleCoupling:Eb=kb(b-b0)(-0)Angle/AngleCoupling:E

’=k’(-0)(’-0’)第四十四页,共六十六页,2022年,8月28日分子力学力场举例:Angle/Angle/Torsioncoupling:E

=k

’(-0)(’-0’)cosBond/TorsionandAngle/Torsioncoupling:E

b=(b-b0)(k1bcos+k2bcos2+k3bcos3)E

=(-0)[k1cos+k

2cos2+k

3cos3]第四十五页,共六十六页,2022年,8月28日分子力学分子结构的优化首先,给出所计算分子的试探结构。不一定是分子的稳定构象,而且往往不是稳定构象。然后,将总空间能Es对所有描述分子构象的变量即分子各原子的三维坐标在一定的范围内求极小值。由于数学上只能保证求得局部极小值,即实现局部优化,而不一定能求得全局最小值。所以得到的是在这一构象附近的一相对稳定的构象。分子力学常用的优化方法有使用一阶导数的最速下降法和使用二阶导数的Newton-Raphson法。第四十六页,共六十六页,2022年,8月28日分子力学分子结构的优化粗结构能量极小构象分子几何优化E局部极小值问题;鞍点第四十七页,共六十六页,2022年,8月28日分子力学分子结构的优化

用于描述分子初始结构的原子坐标可以使用分子内坐标、直角坐标或晶体坐标。从晶体数据得到初始结构数据往往是比较方便的,若没有晶体数据,则可用模型来估计。输入坐标及连接关系力场选择、作用项、参数能量极小化最终结构与能量其它信息第四十八页,共六十六页,2022年,8月28日分子力学分子结构的优化除了初始坐标外,还要提供分子中所有原子的联接关系,以便自动搜索任何两个原子之间的作用,按不同的联接关系以不同的能量函数形式计算对总能量的贡献。计算中所用的能量参数大部分已在程序中准备好,有时,要对某些参数进行修改或增补。

输入坐标及连接关系力场选择、作用项、参数能量极小化最终结构与能量其它信息第四十九页,共六十六页,2022年,8月28日分子力学分子结构的优化分子总能量是原子三维坐标的函数,在计算完初始构象的分子能量后,要进行能量极小化的迭代,直到达到收敛标准为止。最终给出分子体系优化的原子坐标,总空间能及各能量项的贡献。输入坐标及连接关系力场选择、作用项、参数能量极小化最终结构与能量其它信息第五十页,共六十六页,2022年,8月28日分子力学分子结构的优化由于一般只是局部优化,这样的计算只能找到所用的初始构象附近的“最优构象”。所以,选择初始构象是非常关键的。若为了找到全局能量最低构象,须将所有可能的初始构象分别进行优化,最后进行比较,从而确定分子体系的最优构象。对于较大的分子,可能的初始构象的数目会随原子数目的增加而急剧增加。在选择初始构象时,应把从基本的化学知识方面考虑是不可能的构象略去。第五十一页,共六十六页,2022年,8月28日分子力学能量极小化算法一级微商算法最陡下降算法SteepestDescents-SD共轭梯度算法ConjugateGradients-CONJ二级微商算法Newton-RaphsonMethod第五十二页,共六十六页,2022年,8月28日分子力学能量极小化算法-最陡下降法(SD)f(xi+1)=f(xi)+f’(xi)

x第五十三页,共六十六页,2022年,8月28日分子力学能量极小化算法比较最陡下降法:

方向变化大,收敛慢,优化辐度大共轭梯度法收敛快,易陷入局部势阱,对初始结构偏离不大

Newton-Raphson法

计算量较大,当微商小时收敛快第五十四页,共六十六页,2022年,8月28日分子力学分子力学的特点概念清楚,便于理解及应用概念简明易于接受。分子力学中的总“能量”被分解成键的伸缩、键角弯曲、键的扭曲和非键作用等,比起量子化学计算中的Fock矩阵等概念来要直观易懂。

第五十五页,共六十六页,2022年,8月28日分子力学分子力学的特点计算速度快量子化学从头算的计算量随原子轨道数目的增加,按4次方的速度上升,而分子力学的计算量仅与原子数目的平方成正比。计算时间-MM正比于原子数m的平方m2QM正比于轨道数n的n4或n3第五十六页,共六十六页,2022年,8月28日分子力学分子力学的特点与量子化学计算相辅相成分子力学是一种经验方法,其力场是在大量的实验数据的基础上产生的。分子力学宜用于对大分子进行构象分析、研究与空间效应密切相关的有机反应机理、反应活性、有机物的稳定性及生物活性分子的构象与活性的关系;但是,当研究对象与所用的分子力学力场参数化基于的分子集合相差甚远时不宜使用,当然也不能用于人们感兴趣但没有足够多的实验数据的新类型的分子。第五十七页,共六十六页,2022年,8月28日分子力学分子力学的特点与量子化学计算相辅相成

对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,则应使用量子化学计算的方法。然而,在许多情况下,将量子化学计算和分子力学计算结合使用能取得较好的效果。分子力学计算结果可提供量子化学计算所需的分子构象坐标,而量子化学计算结果又给出了分子

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论