版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016-2017年九年级数学上册期末模拟题、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.方程x(x+2)=0的根是()A.x1=0,x2=-2 B.x=0 C.x=2 D.x1=0,x2=22.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.已知x=1是关于x的方程(1-k)x2+k2x-1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或-14.△ABC的三边长分别为2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()5.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146D.50+50(1+x)+50(1+2x)=1466.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是()A.B.C.D.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB.C.3+πD.8﹣π8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内 B.点P在圆上 C.点P在圆外 D.不能确定9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1B.2C.3D.412.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系为()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定、填空题(本大题共6小题,每小题3分,共18分)13.如果函数y=(k-3)+kx+1是二次函数,那么k=.14.圆内接正六边形的边心距为2,则这个正六边形的面积为cm2.15.如图,等腰直角三角形ABC绕C点按顺时针旋转到△A1B1C1的位置(A、C、B1在同一直线上),∠B=90°,如果AB=1,那么AC运动到A1C1所经过的图形的面积是.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.17.如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0.5米时,长臂端点应升高_________.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.、解答题(本大题共7小题,共56分)19.如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.20.解方程:(1)2x2﹣3x﹣1=0.(2)已知关于x的方程(x-3)(x-2)-p2=0.(1)求证:方程总有两个不相等的实数根.(2)当p=2时,求该方程的根.21.如图,点C、D在线段AB上,△PCD是等边三角形.⑴当AC、CD、DB满足怎样的关系式时,△ACP∽△PDB?⑵当△ACP∽△PDB时,求∠APB的度数.22.某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其它费用450元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利润w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利润最大?最大利润是多少元?23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连结BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.24.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.25.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?2016-2017年九年级数学上册期末模拟题答案1.A2.D3.C4.C5.C6.B7.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,[来源:学,科,网]由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.8.A9.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.10.C11.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.12.A13.【解析】根据二次函数的定义,得k2-3k+2=2,解得k=0或k=3.又∵k-3≠0,∴k≠3.∴当k=0时,这个函数是二次函数.答案:014.答案为:24.15.16.8.17.818.【解答】解:过BP中点O,以BP为直径作圆,连接QO,当QO⊥AC时,QO最短,即BP最短,∵∠OQC=∠ABC=90°,∠C=∠C,∴△ABC∽△OQC,∴=,∵AB=3,BC=4,∴AC=5,∵BP=x,∴QO=x,CO=4﹣x,∴=,解得:x=3,当P与C重合时,BP=4,∴BP=x的取值范围是:3≤x≤4,故答案为:3≤x≤4.19.【解答】解:(1)∵点A横坐标为4,∴当x=4时,y=2.∴点A的坐标为(4,2).∵点A是直线与双曲线(k>0)的交点,∴k=4×2=8.(2)如图,过点C、A分别作x轴的垂线,垂足为E、F,∵点C在双曲线上,当y=8时,x=1.∴点C的坐标为(1,8).∵点C、A都在双曲线上,∴S△COE=S△AOF=4.∴S△COE+S梯形CEFA=S△COA+S△AOF.∴S△COA=S梯形CEFA.∵S梯形CEFA=×(2+8)×3=15,∴S△COA=15.20.(1)【解答】解:2x2﹣3x﹣1=0,a=2,b=﹣3,c=﹣1,∴△=9+8=17,∴x=,x1=,x2=.(2)【解析】(1)方程可变形为x2-5x+6-p2=0,Δ=(-5)2-4×1×(6-p2)=1+4p2,∵4p2≥0,∴Δ>0,∴这个方程总有两个不相等的实数根.(2)当p=2时,方程变形为x2-5x+2=0,Δ=25-4×2=17,∴x=,∴x1=,x2=.21.解:⑴∵△PCD是等边三角形∴∠PCD=∠PDC=60°PC=PD=CD∴∠PCA=∠PDB=120°∴当AC、CD、DB满足CD2=AC·BD⑵当△ACP∽△PDB时由∠A=∠BPD,∠B=∠APC∴∠PCD=∠A+∠APC=60°=∠A+∠B[来源:学#科#网Z#X#X#K]∠PDC=∠B+∠BPD=60°∴∠APB=60°+∠APC+∠BPD=60°+60°-∠A+∠60°-∠B=180°-(∠A+∠B)=180°-60°=120°22.解:(1)设y=kx+b,根据题意得,60k+b=80,50k+b=100.解得:k=﹣2,b=200,y=﹣2x+200自变量x的取值范围是:30≤x≤60(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450(3)W=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.23.24.解:(1)由旋转的性质可得∠A1C1B=∠ACB=45°,BC=BC1∴∠CC1B=∠C1CB=45°∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°(2)∵△ABC≌△A1BC1∴BA=BA1,BC=BC1,∠ABC=∠A1BC1∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1∴∠ABA1=∠CBC1∴△ABA1∽△CBC1∴∵∴(3)过点B作BD⊥AC,D为垂足∵△ABC为锐角三角形∴点D在线段AC上Rt△BCD中,BD=BC×sin45°=P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为-2②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为2+5=7。25.解:(1)∵四边形ABCO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年政府公共安全监控技术合同范本3篇
- 2024年版建设项目招标协调合同
- 三年级教学计划3篇
- 员工工作计划
- 2024-2030年中国羟甲烟胺片行业发展潜力预测及投资战略研究报告
- 服装销售工作计划
- 学习部工作计划4篇
- 去超市实习报告范文集合7篇
- 银行员工辞职信
- 关于教师职称述职报告汇编5篇
- 北师大版数学三年级下册全册教案教学设计及教学反思
- 重难点06读后续写-2023年高考英语【热点·重点·难点】(新高考专用)
- 眼科手术围手术期的护理
- 2023年MC工程师年度总结及下一年计划
- 员工调岗调薪申请表
- 《铝及铝合金薄板变形量及残余应力测试方法 切缝翘曲法》
- 诊所污水污物粪便处理方案及周边环境
- 金融模拟交易实验报告
- 国家开放大学电大本科《古代小说戏曲专题》2023期末试题及答案(试卷号:1340)
- 加德纳多元智能理论教学课件
- 北师大版数学八年级上册全册教案
评论
0/150
提交评论