版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列图形中,不是三棱柱展开图的是()A. B. C. D.2.复数的共轭复数在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.执行如图所示的程序框图,若输出的结果为3,则可输入的实数值的个数为()A.1 B.2 C.3 D.44.如图所示,正方体的棱,的中点分别为,,则直线与平面所成角的正弦值为()A. B. C. D.5.已知复数满足,其中是虚数单位,则复数在复平面中对应的点到原点的距离为()A. B. C. D.6.函数的图象大致为()A. B.C. D.7.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为()A. B. C. D.8.若双曲线:绕其对称中心旋转后可得某一函数的图象,则的离心率等于()A. B. C.2或 D.2或9.已知集合,,则()A. B. C. D.10.已知为等腰直角三角形,,,为所在平面内一点,且,则()A. B. C. D.11.已知双曲线的左,右焦点分别为,O为坐标原点,P为双曲线在第一象限上的点,直线PO,分别交双曲线C的左,右支于另一点,且,则双曲线的离心率为()A. B.3 C.2 D.12.已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系中,若函数在处的切线与圆存在公共点,则实数的取值范围为_____.14.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.15.在一次医疗救助活动中,需要从A医院某科室的6名男医生、4名女医生中分别抽调3名男医生、2名女医生,且男医生中唯一的主任医师必须参加,则不同的选派案共有________种.(用数字作答)16.若,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数.18.(12分)在数列和等比数列中,,,.(1)求数列及的通项公式;(2)若,求数列的前n项和.19.(12分)已知椭圆的短轴的两个端点分别为、,焦距为.(1)求椭圆的方程;(2)已知直线与椭圆有两个不同的交点、,设为直线上一点,且直线、的斜率的积为.证明:点在轴上.20.(12分)a,b,c分别为△ABC内角A,B,C的对边.已知a=3,,且B=60°.(1)求△ABC的面积;(2)若D,E是BC边上的三等分点,求.21.(12分)已知函数,.(1)当时,讨论函数的单调性;(2)若,当时,函数,求函数的最小值.22.(10分)已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴并取相同的单位长度建立极坐标系.(1)求曲线的极坐标方程,并说明其表示什么轨迹;(2)若直线的极坐标方程为,求曲线上的点到直线的最大距离.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
根据三棱柱的展开图的可能情况选出选项.【题目详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【答案点睛】本小题主要考查三棱柱展开图的判断,属于基础题.2.D【答案解析】
由复数除法运算求出,再写出其共轭复数,得共轭复数对应点的坐标.得结论.【题目详解】,,对应点为,在第四象限.故选:D.【答案点睛】本题考查复数的除法运算,考查共轭复数的概念,考查复数的几何意义.掌握复数的运算法则是解题关键.3.C【答案解析】试题分析:根据题意,当时,令,得;当时,令,得,故输入的实数值的个数为1.考点:程序框图.4.C【答案解析】
以D为原点,DA,DC,DD1分别为轴,建立空间直角坐标系,由向量法求出直线EF与平面AA1D1D所成角的正弦值.【题目详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1的棱长为2,则,,,取平面的法向量为,设直线EF与平面AA1D1D所成角为θ,则sinθ=|,直线与平面所成角的正弦值为.故选C.【答案点睛】本题考查了线面角的正弦值的求法,也考查数形结合思想和向量法的应用,属于中档题.5.B【答案解析】
利用复数的除法运算化简z,复数在复平面中对应的点到原点的距离为利用模长公式即得解.【题目详解】由题意知复数在复平面中对应的点到原点的距离为故选:B【答案点睛】本题考查了复数的除法运算,模长公式和几何意义,考查了学生概念理解,数学运算,数形结合的能力,属于基础题.6.A【答案解析】
用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【题目详解】因为,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【答案点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.7.B【答案解析】
设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直线斜率之积为可得出的值,进而可求得双曲线的离心率.【题目详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,,,因此,双曲线的离心率为.故选:B.【答案点睛】本题考查双曲线离心率的计算,解答的关键就是得出、、的等量关系,考查计算能力,属于中等题.8.C【答案解析】
由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,所以或,由离心率公式即可算出结果.【题目详解】由双曲线的几何性质与函数的概念可知,此双曲线的两条渐近线的夹角为,又双曲线的焦点既可在轴,又可在轴上,所以或,或.故选:C【答案点睛】本题主要考查了双曲线的简单几何性质,函数的概念,考查了分类讨论的数学思想.9.B【答案解析】
求出集合,利用集合的基本运算即可得到结论.【题目详解】由,得,则集合,所以,.故选:B.【答案点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.10.D【答案解析】
以AB,AC分别为x轴和y轴建立坐标系,结合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【题目详解】如图建系,则,,,由,易得,则.故选:D【答案点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.11.D【答案解析】
本道题结合双曲线的性质以及余弦定理,建立关于a与c的等式,计算离心率,即可.【题目详解】结合题意,绘图,结合双曲线性质可以得到PO=MO,而,结合四边形对角线平分,可得四边形为平行四边形,结合,故对三角形运用余弦定理,得到,而结合,可得,,代入上式子中,得到,结合离心率满足,即可得出,故选D.【答案点睛】本道题考查了余弦定理以及双曲线的性质,难度偏难.12.D【答案解析】
先根据已知条件求解出的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【题目详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【答案点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
利用导数的几何意义可求得函数在处的切线,再根据切线与圆存在公共点,利用圆心到直线的距离满足的条件列式求解即可.【题目详解】解:由条件得到又所以函数在处的切线为,即圆方程整理可得:即有圆心且所以圆心到直线的距离,即.解得或,故答案为:.【答案点睛】本题主要考查了导数的几何意义求解切线方程的问题,同时也考查了根据直线与圆的位置关系求解参数范围的问题,属于基础题.14.③④【答案解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【题目详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【答案点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.15.【答案解析】
首先选派男医生中唯一的主任医师,由题意利用排列组合公式即可确定不同的选派案方法种数.【题目详解】首先选派男医生中唯一的主任医师,然后从名男医生、名女医生中分别抽调2名男医生、名女医生,故选派的方法为:.故答案为.【答案点睛】解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).16.【答案解析】
由已知利用两角差的正弦函数公式可得,两边平方,由同角三角函数基本关系式,二倍角的正弦函数公式即可计算得解.【题目详解】,得,在等式两边平方得,解得.故答案为:.【答案点睛】本题主要考查了两角差的正弦函数公式,同角三角函数基本关系式,二倍角的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)极小值;(3)函数的零点个数为.【答案解析】
(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【题目详解】(1)因为,所以.所以,.所以曲线在点处的切线为;(2)因为,令,得或.列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,,且.由(2)可知,函数在上单调递增,所以函数的零点个数为.【答案点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.18.(1),(2)【答案解析】
(1)根据与可求得,再根据等比数列的基本量求解即可.(2)由(1)可得,再利用错位相减求和即可.【题目详解】解:(1)依题意,,设数列的公比为q,由,可知,由,得,又,则,故,又由,得.(2)依题意.,①则,②①-②得,即,故.【答案点睛】本题主要考查了等比数列的基本量求解以及错位相减求和等.属于中档题.19.(1);(2)见解析.【答案解析】
(1)由已知条件得出、的值,进而可得出的值,由此可求得椭圆的方程;(2)设点,可得,且,,求出直线的斜率,进而可求得直线与的方程,将直线直线与的方程联立,求出点的坐标,即可证得结论.【题目详解】(1)由题设,得,所以,即.故椭圆的方程为;(2)设,则,,.所以直线的斜率为,因为直线、的斜率的积为,所以直线的斜率为.直线的方程为,直线的方程为.联立,解得点的纵坐标为.因为点在椭圆上,所以,则,所以点在轴上.【答案点睛】本题考查椭圆方程的求解,同时也考查了点在定直线的证明,考查计算能力与推理能力,属于中等题.20.(1);(2)【答案解析】
(1)根据正弦定理,可得△ABC为直角三角形,然后可计算b,可得结果.(2)计算,然后根据余弦定理,可得,利用平方关系,可得结果.【题目详解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面积为.(2)设D靠近点B,则BD=DE=EC=1.,所以所以.【答案点睛】本题考查正弦定理的应用,属基础题.21.(1)见解析(2)的最小值为【答案解析】
(1)由题可得函数的定义域为,,当时,,令,可得;令,可得,所以函数在上单调递增,在上单调递减;当时,令,可得;令,可得或,所以函数在,上单调递增,在上单调递减;当时,恒成立,所以函数在上单调递增.综上,当时,函数在上单调递增,在上单调递减;当时,函数在,上单调递增,在上单调递减;当时,函数在上单调递增.(2)方法一:当时,,,设,,则,所以函数在上单调递减,所以,当且仅当时取等号.当时,设,则,所以,设,,则,所以函数在上单调递减,且,,所以存在,使得,所以当时,;当时,,所以函数在上单调递增,在上单调递减,因为,,所以,所以,当且仅当时取等号.所以当时,函数取得最小值,且,故函数的最小值为.方法二:当时,,,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园心理健康合同:校园心理健康服务承包协议
- 新疆维吾尔自治区劳动合同范本样本
- 山林承包合同使用指南
- 2024年范文生态园土地承包合同
- 2024试析《物业服务合同》的解除或终止问题
- 2024小吃加盟合同范本
- 物业管理服务协议参考样本
- 个人建房施工合同范本
- 2024广告设计类合同范本
- 解除版权买卖合同协议
- 难点详解人教版九年级化学上册第一单元走进化学世界专题训练练习题(含答案详解版)
- 财务管理委托代理会计服务 投标文件(技术方案)
- 2024年全国高考Ⅰ卷英语试题及答案
- 期刊编辑的学术期刊编辑规范考核试卷
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 电梯安全总监和安全员的任命文件
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
- 2024年安徽省普通高中学业水平选择性考试 历史试卷
- 电子商务师职业技能等级证书培训方案
- JBT 14615-2024 内燃机 活塞运动组件 清洁度限值及测定方法(正式版)
- DL5009.2-2013电力建设安全工作规程第2部分:电力线路
评论
0/150
提交评论