数列求和题型_第1页
数列求和题型_第2页
数列求和题型_第3页
数列求和题型_第4页
数列求和题型_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列求和题型数列求和题型数列求和题型数列求和题型编制仅供参考审核批准生效日期地址:电话:传真:邮编:第二类:乘公比错项相减(等差X等比)这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{anbn}的前n项和,其中{an}{bn}分别是等差数列和等比数列。第三类:裂项相消法

这是分解与组合思想在数列求和中的具体应用。

裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如解析:要先观察通项类型,在裂项求和时候,尤其要注意:究竟是像例2一样剩下首尾两项,还是像例3一样剩下四项。第四类:倒序相加法这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an).数列吗是证明你的结论;解析:此类型关键是抓住数列中与首末两端等距离的两项之和相等这一特点来进行倒序相加的。

此例题不仅利用了倒序相加法,还利用了裂项相消法。在数列问题中,要学会灵活应用不同的方法加以求解。第五类:分组求和法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。第六类:拆项求和法

在这类方法中,我们先研究通项,通项可以分解成几个等差或等比数列的和或差的形式,再代入公式求和.例7:求数列9,99,999,…

的前n项和sn

.分析:此数列也既不是等差数列也不是等比数列启发学生先归纳出通项公式an=10n-1可转化为一个等比数列与一个常数列。分别求和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论