


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是的共轭复数,则()A. B. C. D.2.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路3.已知双曲线:(,)的焦距为.点为双曲线的右顶点,若点到双曲线的渐近线的距离为,则双曲线的离心率是()A. B. C.2 D.34.函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为()A. B. C. D.5.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.6.要得到函数的图象,只需将函数的图象A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度7.函数的定义域为()A. B. C. D.8.已知的垂心为,且是的中点,则()A.14 B.12 C.10 D.89.若圆锥轴截面面积为,母线与底面所成角为60°,则体积为()A. B. C. D.10.平行四边形中,已知,,点、分别满足,,且,则向量在上的投影为()A.2 B. C. D.11.已知向量与的夹角为,,,则()A. B.0 C.0或 D.12.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.14.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB15.若满足约束条件,则的最大值为__________.16.若展开式的二项式系数之和为64,则展开式各项系数和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知(1)若,且函数在区间上单调递增,求实数a的范围;(2)若函数有两个极值点,且存在满足,令函数,试判断零点的个数并证明.18.(12分)已知的三个内角所对的边分别为,向量,,且.(1)求角的大小;(2)若,求的值19.(12分)已知函数.(1)求证:当时,;(2)若对任意存在和使成立,求实数的最小值.20.(12分)在平面直角坐标系中,曲线:(为参数,),曲线:(为参数).若曲线和相切.(1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的普通方程;(2)若点,为曲线上两动点,且满足,求面积的最大值.21.(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.①求;②规定,经过计算机计算可估计得,请根据①中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.22.(10分)如图,直三棱柱中,底面为等腰直角三角形,,,,分别为,的中点,为棱上一点,若平面.(1)求线段的长;(2)求二面角的余弦值.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【答案解析】
先利用复数的除法运算法则求出的值,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b.【题目详解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故选:A.【答案点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.2.D【答案解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【题目详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【答案点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.3.A【答案解析】
由点到直线距离公式建立的等式,变形后可求得离心率.【题目详解】由题意,一条渐近线方程为,即,∴,,即,,.故选:A.【答案点睛】本题考查求双曲线的离心率,掌握渐近线方程与点到直线距离公式是解题基础.4.B【答案解析】
根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【题目详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【答案点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.5.D【答案解析】
由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【题目详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【答案点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.6.D【答案解析】
先将化为,根据函数图像的平移原则,即可得出结果.【题目详解】因为,所以只需将的图象向右平移个单位.【答案点睛】本题主要考查三角函数的平移,熟记函数平移原则即可,属于基础题型.7.C【答案解析】
函数的定义域应满足故选C.8.A【答案解析】
由垂心的性质,得到,可转化,又即得解.【题目详解】因为为的垂心,所以,所以,而,所以,因为是的中点,所以.故选:A【答案点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.9.D【答案解析】
设圆锥底面圆的半径为,由轴截面面积为可得半径,再利用圆锥体积公式计算即可.【题目详解】设圆锥底面圆的半径为,由已知,,解得,所以圆锥的体积.故选:D【答案点睛】本题考查圆锥的体积的计算,涉及到圆锥的定义,是一道容易题.10.C【答案解析】
将用向量和表示,代入可求出,再利用投影公式可得答案.【题目详解】解:,得,则向量在上的投影为.故选:C.【答案点睛】本题考查向量的几何意义,考查向量的线性运算,将用向量和表示是关键,是基础题.11.B【答案解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【题目详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【答案点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.12.C【答案解析】
由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案.【题目详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:.【答案点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【题目详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【答案点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.14.-7【答案解析】
由题意得AB+【题目详解】由题意得ABBC+∴AB+【答案点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,15.4【答案解析】
作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.16.1【答案解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【题目详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【答案点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)函数有两个零点和【答案解析】试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。解析:(1)当时,,因为函数在上单调递增,所以当时,恒成立.[来源:学&科&网Z&X&X&K]函数的对称轴为.①,即时,,即,解之得,解集为空集;②,即时,即,解之得,所以③,即时,即,解之得,所以综上所述,当函数在区间上单调递增.(2)∵有两个极值点,∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.∵∴函数也是在区间和上单调递增,在上单调递减∵,∴是函数的一个零点.由题意知:∵,∴,∴∴,∴又=∵是方程的两个根,∴,,∴∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增∴当时,,当时,当时,∴函数有两个零点和.18.(1)(2)【答案解析】
利用平面向量数量积的坐标表示和二倍角的余弦公式得到关于的方程,解方程即可求解;由知,在中利用余弦定理得到关于的方程,与方程联立求出,进而求出,利用两角差的正弦公式求解即可.【题目详解】由题意得,,由二倍角的余弦公式可得,,又因为,所以,解得或,∵,∴.在中,由余弦定理得,即①又因为,把代入①整理得,,解得,,所以为等边三角形,,∴,即.【答案点睛】本题考查利用平面向量数量积的坐标表示和余弦定理及二倍角的余弦公式解三角形;熟练掌握余弦的二倍角公式和余弦定理是求解本题的关键;属于中档题、常考题型.19.(1)见解析;(2)【答案解析】
(1)不等式等价于,设,利用导数可证恒成立,从而原不等式成立.(2)由题设条件可得在上有两个不同零点,且,利用导数讨论的单调性后可得其最小值,结合前述的集合的包含关系可得的取值范围.【题目详解】(1)设,则,当时,由,所以在上是减函数,所以,故.因为,所以,所以当时,.(2)由(1)当时,;任意,存在和使成立,所以在上有两个不同零点,且,(1)当时,在上为减函数,不合题意;(2)当时,,由题意知在上不单调,所以,即,当时,,时,,所以在上递减,在上递增,所以,解得,因为,所以成立,下面证明存在,使得,取,先证明,即证,令,则在时恒成立,所以成立,因为,所以时命题成立.因为,所以.故实数的最小值为.【答案点睛】本题考查导数在不等式恒成立、等式能成立中的应用,前者注意将欲证不等式合理变形,转化为容易证明的新不等式,后者需根据等式能成立的特点确定出函数应该具有的性质,再利用导数研究该性质,本题属于难题.20.(1);(2)【答案解析】
(1)消去参数,将圆的参数方程,转化为普通方程,再由圆心到直线的距离等于半径,可求得圆的普通方程,最后利用求得圆的极坐标方程.(2)利用圆的参数方程以及辅助角公式,由此求得的面积的表达式,再由三角函数最值的求法,求得三角形面积的最大值.【题目详解】(1)由题意得:,:因为曲线和相切,所以,即:;(2)设,所以所以当时,面积最大值为【答案点睛】本小题主要考查参数方程转化为普通方程,考查直角坐标方程转化为极坐标方程,考查利用参数的方法求三角形面积的最值,属于中档题.21.(1)分布列见解析;(2)①;②,.【答案解析】
(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黑龙江职业学院《司法法律社会工作》2023-2024学年第二学期期末试卷
- 新疆大学《水资源系统分析》2023-2024学年第二学期期末试卷
- 上海立信会计金融学院《数据挖掘与智能分析双语》2023-2024学年第二学期期末试卷
- 山西旅游职业学院《用户界面设计》2023-2024学年第二学期期末试卷
- 辽宁省交通高等专科学校《装饰工程计量与计价设计》2023-2024学年第二学期期末试卷
- 广东茂名农林科技职业学院《建筑设计》2023-2024学年第二学期期末试卷
- 广东舞蹈戏剧职业学院《基础医学概论》2023-2024学年第二学期期末试卷
- 2025年福建省安全员考试题库及答案
- 广西工业职业技术学院《器乐合奏2》2023-2024学年第二学期期末试卷
- 2025贵州省安全员-B证考试题库附答案
- 杭州市淳安县国有企业招聘笔试真题2024
- 安徽省芜湖市2024-2025学年第一学期期末考试七年级语文试卷(含答案)
- 2024政府采购评审专家考试真题库及答案
- 2024年花盆市场分析现状
- 2025山东省退役军人事务厅所属事业单位招聘人员历年高频重点提升(共500题)附带答案详解
- 2024年社区工作者考试时事政治模拟题及答案
- 退市新规解读-上海证券交易所、大同证券
- 教育部中国特色学徒制课题:现代职业教育体系建设背景下中国特色学徒制治理体系与资源配置研究
- 外墙真石漆施工方案
- 森林防火安全生产工作
- 护理工作十四五规划
评论
0/150
提交评论