![2023学年广东省深圳市第二高级中学高考数学五模试卷(含答案解析)_第1页](http://file4.renrendoc.com/view/66ab88b9c4273783a65b37a732f3a8c6/66ab88b9c4273783a65b37a732f3a8c61.gif)
![2023学年广东省深圳市第二高级中学高考数学五模试卷(含答案解析)_第2页](http://file4.renrendoc.com/view/66ab88b9c4273783a65b37a732f3a8c6/66ab88b9c4273783a65b37a732f3a8c62.gif)
![2023学年广东省深圳市第二高级中学高考数学五模试卷(含答案解析)_第3页](http://file4.renrendoc.com/view/66ab88b9c4273783a65b37a732f3a8c6/66ab88b9c4273783a65b37a732f3a8c63.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()2.已知双曲线(,)的左、右焦点分别为,以(为坐标原点)为直径的圆交双曲线于两点,若直线与圆相切,则该双曲线的离心率为()A. B. C. D.3.已知集合,,若,则()A. B. C. D.4.已知满足,则()A. B. C. D.5.设集合,,若,则()A. B. C. D.6.已知函数,给出下列四个结论:①函数的值域是;②函数为奇函数;③函数在区间单调递减;④若对任意,都有成立,则的最小值为;其中正确结论的个数是()A. B. C. D.7.某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为().A. B. C.1 D.8.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路 B.乙走红门盘道徒步线路C.丙走桃花峪登山线路 D.甲走天烛峰登山线路9.某市气象部门根据2018年各月的每天最高气温平均数据,绘制如下折线图,那么,下列叙述错误的是()A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中,2月份的最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10°C的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势10.等比数列中,,则与的等比中项是()A.±4 B.4 C. D.11.的展开式中的系数是()A.160 B.240 C.280 D.32012.本次模拟考试结束后,班级要排一张语文、数学、英语、物理、化学、生物六科试卷讲评顺序表,若化学排在生物前面,数学与物理不相邻且都不排在最后,则不同的排表方法共有()A.72种 B.144种 C.288种 D.360种二、填空题:本题共4小题,每小题5分,共20分。13.若展开式的二项式系数之和为64,则展开式各项系数和为__________.14.设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则双曲线的离心率为.15.函数的最小正周期是_______________,单调递增区间是__________.16.的展开式中,若的奇数次幂的项的系数之和为32,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是公比为的无穷等比数列,其前项和为,满足,________.是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由.从①,②,③这三个条件中任选一个,补充在上面问题中并作答.18.(12分)已知数列的前项和为,且满足().(1)求数列的通项公式;(2)设(),数列的前项和.若对恒成立,求实数,的值.19.(12分)已知为坐标原点,单位圆与角终边的交点为,过作平行于轴的直线,设与终边所在直线的交点为,.(1)求函数的最小正周期;(2)求函数在区间上的值域.20.(12分)已知等比数列是递增数列,且.(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.22.(10分)设函数(其中),且函数在处的切线与直线平行.(1)求的值;(2)若函数,求证:恒成立.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【题目详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【答案点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.2.D【答案解析】
连接,可得,在中,由余弦定理得,结合双曲线的定义,即得解.【题目详解】连接,则,,所以,在中,,,故在中,由余弦定理可得.根据双曲线的定义,得,所以双曲线的离心率故选:D【答案点睛】本题考查了双曲线的性质及双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.3.A【答案解析】
由,得,代入集合B即可得.【题目详解】,,,即:,故选:A【答案点睛】本题考查了集合交集的含义,也考查了元素与集合的关系,属于基础题.4.A【答案解析】
利用两角和与差的余弦公式展开计算可得结果.【题目详解】,.故选:A.【答案点睛】本题考查三角求值,涉及两角和与差的余弦公式的应用,考查计算能力,属于基础题.5.A【答案解析】
根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【题目详解】依题意可知是集合的元素,即,解得,由,解得.【答案点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.6.C【答案解析】
化的解析式为可判断①,求出的解析式可判断②,由得,结合正弦函数得图象即可判断③,由得可判断④.【题目详解】由题意,,所以,故①正确;为偶函数,故②错误;当时,,单调递减,故③正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故④正确.故选:C.【答案点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.7.B【答案解析】
首先由三视图还原几何体,进一步求出几何体的棱长.【题目详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为.故选:B.【答案点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题.8.D【答案解析】
甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可.【题目详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确.综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路,丙走红门盘道徒步线路故选:D【答案点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.9.D【答案解析】
根据折线图依次判断每个选项得到答案.【题目详解】由绘制出的折线图知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误.故选:D.【答案点睛】本题考查了折线图,意在考查学生的理解能力.10.A【答案解析】
利用等比数列的性质可得,即可得出.【题目详解】设与的等比中项是.
由等比数列的性质可得,.
∴与的等比中项
故选A.【答案点睛】本题考查了等比中项的求法,属于基础题.11.C【答案解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【题目详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【答案点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.12.B【答案解析】
利用分步计数原理结合排列求解即可【题目详解】第一步排语文,英语,化学,生物4种,且化学排在生物前面,有种排法;第二步将数学和物理插入前4科除最后位置外的4个空挡中的2个,有种排法,所以不同的排表方法共有种.选.【答案点睛】本题考查排列的应用,不相邻采用插空法求解,准确分步是关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13.1【答案解析】
由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【题目详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【答案点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.14.【答案解析】
不妨设双曲线,焦点,令,由的长为实轴的二倍能够推导出的离心率.【题目详解】不妨设双曲线,焦点,对称轴,由题设知,因为的长为实轴的二倍,,,,故答案为.【答案点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.15.,,【答案解析】
化简函数的解析式,利用余弦函数的图象和性质求解即可.【题目详解】函数,最小正周期,令,,可得,,所以单调递增区间是,,.故答案为:,,,.【答案点睛】本题主要考查了二倍角的公式的应用,余弦函数的图象与性质,属于中档题.16.【答案解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.见解析【答案解析】
选择①或②或③,求出的值,然后利用等比数列的求和公式可得出关于的不等式,判断不等式是否存在符合条件的正整数解,在有解的情况下,解出不等式,进而可得出结论.【题目详解】选择①:因为,所以,所以.令,即,,所以使得的正整数的最小值为;选择②:因为,所以,.因为,所以不存在满足条件的正整数;选择③:因为,所以,所以.令,即,整理得.当为偶数时,原不等式无解;当为奇数时,原不等式等价于,所以使得的正整数的最小值为.【答案点睛】本题考查了等比数列的通项公式求和公式,考查了推理能力与计算能力,属于中档题.18.(1)(2),.【答案解析】
(1)根据数列的通项与前n项和的关系式,即求解数列的通项公式;(2)由(1)可得,利用等比数列的前n项和公式和裂项法,求得,结合题意,即可求解.【题目详解】(1)由题意,当时,由,解得;当时,可得,即,显然当时上式也适合,所以数列的通项公式为.(2)由(1)可得,所以.因为对恒成立,所以,.【答案点睛】本题主要考查了数列的通项公式的求解,等差数列的前n项和公式,以及裂项法求和的应用,其中解答中熟记等差、等比数列的通项公式和前n项和公式,以及合理利用“裂项法”求和是解答的关键,着重考查了推理与运算能力,属于中档试题.19.(1);(2).【答案解析】
(1)根据题意,求得,,因而得出,利用降幂公式和二倍角的正弦公式化简函数,最后利用,求出的最小正周期;(2)由(1)得,再利用整体代入求出函数的值域.【题目详解】(1)因为,,所以,,所以函数的最小正周期为.(2)因为,所以,所以,故函数在区间上的值域为.【答案点睛】本题考查正弦型函数的周期和值域,运用到向量的坐标运算、降幂公式和二倍角的正弦公式,考查化简和计算能力.20.(1)(2)【答案解析】
(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和.【题目详解】解:(1)由是递增等比数列,,联立,解得或,因为数列是递增数列,所以只有符合题意,则,结合可得,∴数列的通项公式:;(2)由,∴;∴;那么,①则,②将②﹣①得:.【答案点睛】本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.21.(1);(2)证明见解析.【答案解析】
(1),分,,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【题目详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高新技术产业园区运营承包经营合同
- 生物技术课程导入计划
- 各行各业主管的共性与差异计划
- 校外美术实践基地建设计划
- 老年医学科医生工作计划
- 2025年灌装机系列设备合作协议书
- 社区个人工作计划提升社区居民安全意识
- 主管的团队合作计划
- 工作与生活平衡的实践计划
- 仓库作业改善实践的分享计划
- 2024-2025年第二学期学校教导处工作计划(二)
- 2025年苏州卫生职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 《工程勘察设计收费标准》(2002年修订本)
- 反面典型案例剖析材料范文(通用6篇)
- 年“职工书屋”示范点申报材料(2篇总结汇报报告参考)
- 部编本语文五年级上册第七单元教材解读
- 入职申请表完整版
- 基于Java的药店管理系统的设计与实现-论文
- 《约哈里之窗》ppt课件
- 三年级抓关键句概括段意-课件PPT
- 室外雨水量及管径计算表
评论
0/150
提交评论