![2023学年岳阳市重点中学高考数学必刷试卷(含答案解析)_第1页](http://file4.renrendoc.com/view/5d34a4cc969d26b6c3d0ce5fa21320b1/5d34a4cc969d26b6c3d0ce5fa21320b11.gif)
![2023学年岳阳市重点中学高考数学必刷试卷(含答案解析)_第2页](http://file4.renrendoc.com/view/5d34a4cc969d26b6c3d0ce5fa21320b1/5d34a4cc969d26b6c3d0ce5fa21320b12.gif)
![2023学年岳阳市重点中学高考数学必刷试卷(含答案解析)_第3页](http://file4.renrendoc.com/view/5d34a4cc969d26b6c3d0ce5fa21320b1/5d34a4cc969d26b6c3d0ce5fa21320b13.gif)
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件2.已知等差数列的前项和为,,,则()A.25 B.32 C.35 D.403.已知函数若恒成立,则实数的取值范围是()A. B. C. D.4.已知双曲线的一条渐近线方程为,则双曲线的离心率为()A. B. C. D.5.已知定义在上的奇函数和偶函数满足(且),若,则函数的单调递增区间为()A. B. C. D.6.已知函数满足:当时,,且对任意,都有,则()A.0 B.1 C.-1 D.7.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.8.关于函数有下述四个结论:()①是偶函数;②在区间上是单调递增函数;③在上的最大值为2;④在区间上有4个零点.其中所有正确结论的编号是()A.①②④ B.①③ C.①④ D.②④9.已知是定义在上的奇函数,当时,,则()A. B.2 C.3 D.10.函数的值域为()A. B. C. D.11.设,,,则,,三数的大小关系是A. B.C. D.12.如图,在中,,是上一点,若,则实数的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.14.电影《厉害了,我的国》于2018年3月正式登陆全国院线,网友纷纷表示,看完电影热血沸腾“我为我的国家骄傲,我为我是中国人骄傲!”《厉害了,我的国》正在召唤我们每一个人,不忘初心,用奋斗书写无悔人生,小明想约甲、乙、丙、丁四位好朋友一同去看《厉害了,我的国》,并把标识为的四张电影票放在编号分别为1,2,3,4的四个不同的盒子里,让四位好朋友进行猜测:甲说:第1个盒子里放的是,第3个盒子里放的是乙说:第2个盒子里放的是,第3个盒子里放的是丙说:第4个盒子里放的是,第2个盒子里放的是丁说:第4个盒子里放的是,第3个盒子里放的是小明说:“四位朋友你们都只说对了一半”可以预测,第4个盒子里放的电影票为_________15.已知关于空间两条不同直线m、n,两个不同平面、,有下列四个命题:①若且,则;②若且,则;③若且,则;④若,且,则.其中正确命题的序号为______.16.记Sk=1k+2k+3k+……+nk,当k=1,2,3,……时,观察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推测,A﹣B=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当(为自然对数的底数)时,求函数的极值;(2)为的导函数,当,时,求证:.18.(12分)如图,在正四棱锥中,底面正方形的对角线交于点且(1)求直线与平面所成角的正弦值;(2)求锐二面角的大小.19.(12分)已知函数.(1)求函数的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别是a,b,c,若满足,,,求.20.(12分)已知函数.(Ⅰ)若,求曲线在处的切线方程;(Ⅱ)当时,要使恒成立,求实数的取值范围.21.(12分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,22.(10分)已知函数,(Ⅰ)当时,证明;(Ⅱ)已知点,点,设函数,当时,试判断的零点个数.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【答案解析】
先解不等式化简两个条件,利用集合法判断充分必要条件即可【题目详解】解不等式可得,解绝对值不等式可得,由于为的子集,据此可知“”是“”的必要不充分条件.故选:B【答案点睛】本题考查了必要不充分条件的判定,考查了学生数学运算,逻辑推理能力,属于基础题.2.C【答案解析】
设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得.【题目详解】设等差数列的首项为,公差为,则,解得,∴,即有.故选:C.【答案点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题.3.D【答案解析】
由恒成立,等价于的图像在的图像的上方,然后作出两个函数的图像,利用数形结合的方法求解答案.【题目详解】因为由恒成立,分别作出及的图象,由图知,当时,不符合题意,只须考虑的情形,当与图象相切于时,由导数几何意义,此时,故.故选:D【答案点睛】此题考查的是函数中恒成立问题,利用了数形结合的思想,属于难题.4.B【答案解析】
由题意得出的值,进而利用离心率公式可求得该双曲线的离心率.【题目详解】双曲线的渐近线方程为,由题意可得,因此,该双曲线的离心率为.故选:B.【答案点睛】本题考查利用双曲线的渐近线方程求双曲线的离心率,利用公式计算较为方便,考查计算能力,属于基础题.5.D【答案解析】
根据函数的奇偶性用方程法求出的解析式,进而求出,再根据复合函数的单调性,即可求出结论.【题目详解】依题意有,①,②①②得,又因为,所以,在上单调递增,所以函数的单调递增区间为.故选:D.【答案点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.6.C【答案解析】
由题意可知,代入函数表达式即可得解.【题目详解】由可知函数是周期为4的函数,.故选:C.【答案点睛】本题考查了分段函数和函数周期的应用,属于基础题.7.A【答案解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【题目详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【答案点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.8.C【答案解析】
根据函数的奇偶性、单调性、最值和零点对四个结论逐一分析,由此得出正确结论的编号.【题目详解】的定义域为.由于,所以为偶函数,故①正确.由于,,所以在区间上不是单调递增函数,所以②错误.当时,,且存在,使.所以当时,;由于为偶函数,所以时,所以的最大值为,所以③错误.依题意,,当时,,所以令,解得,令,解得.所以在区间,有两个零点.由于为偶函数,所以在区间有两个零点.故在区间上有4个零点.所以④正确.综上所述,正确的结论序号为①④.故选:C【答案点睛】本小题主要考查三角函数的奇偶性、单调性、最值和零点,考查化归与转化的数学思想方法,属于中档题.9.A【答案解析】
由奇函数定义求出和.【题目详解】因为是定义在上的奇函数,.又当时,,.故选:A.【答案点睛】本题考查函数的奇偶性,掌握奇函数的定义是解题关键.10.A【答案解析】
由计算出的取值范围,利用正弦函数的基本性质可求得函数的值域.【题目详解】,,,因此,函数的值域为.故选:A.【答案点睛】本题考查正弦型函数在区间上的值域的求解,解答的关键就是求出对象角的取值范围,考查计算能力,属于基础题.11.C【答案解析】
利用对数函数,指数函数以及正弦函数的性质和计算公式,将a,b,c与,比较即可.【题目详解】由,,,所以有.选C.【答案点睛】本题考查对数值,指数值和正弦值大小的比较,是基础题,解题时选择合适的中间值比较是关键,注意合理地进行等价转化.12.C【答案解析】
由题意,可根据向量运算法则得到(1﹣m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【题目详解】由题意及图,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故选C.【答案点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.130.15.【答案解析】
由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得的最大值.【题目详解】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.(2)设顾客一次购买水果的促销前总价为元,元时,李明得到的金额为,符合要求.元时,有恒成立,即,即元.所以的最大值为.【答案点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.14.A或D【答案解析】
分别假设每一个人一半是对的,然后分别进行验证即可.【题目详解】解:假设甲说:第1个盒子里面放的是是对的,则乙说:第3个盒子里面放的是是对的,丙说:第2个盒子里面放的是是对的,丁说:第4个盒子里面放的是是对的,由此可知第4个盒子里面放的是;假设甲说:第3个盒子里面放的是是对的,则丙说:第4个盒子里面放的是是对的,乙说:第2个盒子里面放的是是对的,丁说:第3个盒子里面放的是是对的,由此可知第4个盒子里面放的是.故第4个盒子里面放的电影票为或.故答案为:或【答案点睛】本题考查简单的合情推理,考查推理论证能力、分析判断能力、归纳总结能力,属于中档题.15.③④【答案解析】
由直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义判断.【题目详解】①若且,的位置关系是平行、相交或异面,①错;②若且,则或者,②错;③若,设过的平面与交于直线,则,又,则,∴,③正确;④若,且,由线面垂直的定义知,④正确.故答案为:③④.【答案点睛】本题考查直线与直线的位置关系,直线与平面的位置关系,面面垂直的判定定理和线面垂直的定义,考查空间线面间的位置关系,掌握空间线线、线面、面面位置关系是解题基础.16.【答案解析】
观察知各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,据此计算得到答案.【题目详解】根据所给的已知等式得到:各等式右边各项的系数和为1,最高次项的系数为该项次数的倒数,∴A,A1,解得B,所以A﹣B.故答案为:.【答案点睛】本题考查了归纳推理,意在考查学生的推理能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)极大值,极小值;(2)详见解析.【答案解析】
首先确定函数的定义域和;(1)当时,根据的正负可确定单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明,设,令,利用导数可证得,进而得到结论.【题目详解】由题意得:定义域为,,(1)当时,,当和时,;当时,,在,上单调递增,在上单调递减,极大值为,极小值为.(2)要证:,即证:,即证:,化简可得:.,,即证:,设,令,则,在上单调递增,,则由,从而有:.【答案点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.18.(1);(2).【答案解析】
(1)以分别为轴,轴,轴,建立空间直角坐标系,设底面正方形边长为再求解与平面的法向量,继而求得直线与平面所成角的正弦值即可.(2)分别求解平面与平面的法向量,再求二面角的余弦值判断二面角大小即可.【题目详解】解:在正四棱锥中,底面正方形的对角线交于点所以平面取的中点的中点所以两两垂直,故以点为坐标原点,以分别为轴,轴,轴,建立空间直角坐标系.设底面正方形边长为因为所以所以,所以,设平面的法向量是,因为,,所以,,取则,所以所以,所以直线与平面所成角的正弦值为.设平面的法向量是,因为,,所以,取则所以,由知平面的法向量是,所以所以,所以锐二面角的大小为.【答案点睛】本题主要考查了建立平面直角坐标系求解线面夹角以及二面角的问题,属于中档题.19.(1);(2)【答案解析】
(1)化简得到,取,解得答案.(2),解得,根据余弦定理得到,再用一次余弦定理解得答案.【题目详解】(1).取,解得.(2),因为,故,.根据余弦定理:,..【答案点睛】本题考查了三角恒等变换,三角函数单调性,余弦定理,意在考查学生对于三角函数知识的综合应用.20.(Ⅰ)(Ⅱ)【答案解析】
(Ⅰ)求函数的导函数,即可求得切线的斜率,则切线方程得解;(Ⅱ)构造函数,对参数分类讨论,求得函数的单调性,以及最值,即可容易求得参数范围.【题目详解】(Ⅰ)当时,,则.所以.又,故所求切线方程为,即.(Ⅱ)依题意,得,即恒成立.令,则.①当时,因为,不合题意.②当时,令,得,,显
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022火电厂铁路专用线安全管理标准
- 第十六章 区域发展 第2讲 产业转型地区的结构优化高考地理第一轮复习课件
- (高清版)DB11∕T 2385-2024 外保温复合装饰线应用技术规程
- 《信号调制解调》课件
- 2025至2031年中国抽油机专用皮带转离合器行业投资前景及策略咨询研究报告
- 《频度副词讲解》课件
- 2025至2031年中国TPE密封条行业投资前景及策略咨询研究报告
- 《母亲节主题班会》课件
- 医院药学工作转型课件
- 辐射环境监测人员持证上岗考核习题集复习测试有答案
- 初二上劳动技术课件电子版
- 创业计划书模板-创业计划书-商业计划书模板-项目计划书模板-商业计划书30
- 医院护理带教老师竞聘课件
- DB23T 3539-2023 金属非金属矿山采掘施工企业安全生产标准化评定规范
- 四川虹科创新科技有限公司高强超薄耐摔玻璃智能制造产业化项目环境影响报告
- 多联机空调系统设计课件
- 烛之武退秦师 全市一等奖
- 提高高中教学质量的几点建议
- 地形图林地的勘界及面积测量-林地实地勘界与勾绘(森林调查技术)
- 技术规范书柴油发电机组
- 新华字典第12版电子版
评论
0/150
提交评论