




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
期末复习专题:平行四边形与特殊平行四边形期末复习专题:平行四边形与特殊平行四边形期末复习专题:平行四边形与特殊平行四边形V:1.0精细整理,仅供参考期末复习专题:平行四边形与特殊平行四边形日期:20xx年X月期末复习专题:平行四边形与特殊的平行四边形平行四边形(天河区)如图所示,在平行直角坐标系中,▱OMNP的顶点P坐标是(3,4),顶点M坐标是(4,0)、则顶点N的坐标是()N(7,4) B.N(8,4) C.N(7,3) D.N(8,3)(越秀区)下列判断正确的是()A.一组对边平行,另一组对边相等的四边形一定是平行四边形B.两条对角线互相平分的四边形一定是平行四边形C.两组邻角分别互补的四边形一定是平行四边形D.两条对角线相等的四边形一定是平行四边形(番禺区)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC(天河区)如图,在▱ABCD中,点M为CD的中点,且DC=2AD,则AM与BM的夹角的度数为()A.100° B.95° C.90° D.85°(海珠区)如图,在平行四边形ABCD中,E,F是对角线BD上的两点,且DE=BF,求证:四边形AFCE是平行四边形.(番禺区)如图,在平行四边形ABCD中,点E是AD的中点,连接CE并延长,交BA的延长线于点F.求证:FA=AB.(番禺区)如图,在Rt△ABC中,∠ACB=90°,点E为AB中点,连结CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.(1)求证:四边形ACEF是平行四边形.(2)若EC=2ED=2x,试求△ABC的面积与四边形ACEF面积的比值.(天河区)如图,直线y=x+3与x轴、y轴分别相交于A、C两点,过点B(6,0),E(0,﹣6)的直线上有一点P,满足∠PCA=135°(1)求证:四边形ACPB是平行四边形;(2)求点P的坐标及线段PB的长度.(白云区)如图,▱ABCD的周长为52cm,AB边的垂直平分线经过点D,垂足为E,▱ABCD的周长比△ABD的周长多10cm.∠BDE=35°.(1)求∠C的度数;(2)求AB和AD的长.(越秀区)如图,在等腰梯形OABC中BC∥OA,OC=AB,且A(30,0),C(9,14),点P、Q分别是AO边、BC边上的动点,且保持AP=3BQ=2t.(1)求BC的长度;(2)四边形OPQC能否为平行四边形?若能,求出此时t的值;若不能,说明理由.(3)若直线PQ将等腰梯形OABC分成面积比为1:2的两个部分,请求出此时的t值.(白云区)如图,已知线段AC、BD相互垂直,垂足为O,且OA>OC,OB>OD.(1)请顺次连接A、B、C、D(画出图形),则四边形ABCD平行四边形(填“是”或“不是”);(2)对(1)中你的结论进行说理;(3)求证:BC+AD>AB+CD.(番禺区)如图,在□中,,,为中点,于点,连接,设.(1)当时,求CE的长;(2)当时,①证明:;②设的度数为,的度数为,求关于的函数解析式.(南沙区)如图,在四边形ABCD中,AD∥BC,B90°,AD=8cm,BC=10cm,AB=6cm,点Q从点A出发以1cm/s的速度向点D运动,点P从点B出发以2cm/s的速度向点C运动,P、Q两点同时出发,当点P到达点C时,两点同时停止运动.若设运动时间为t(s).(1)直接写出:QD=, ;(用含t的式子表示)(2)当t为何值时,四边形PQDC为平行四边形?
(3)若点P与点C不重合,且DQ≠DP,当t为何值时,DPQ是等腰三角形?
矩形(白云区)已知矩形的对角线长为1,两条相邻的边长之和为m,则矩形的面积为()m2+1 B.m2﹣1 C. D.(天河区)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2 B.2 C.2 D.(白云区)如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠AOD=120°,AB=3(1)∠ABD=;(2)求矩形ABCD的面积(结果用根号表示)(越秀区)如图,已知四边形ABCD中,AD∥BC,∠B=90°,AD=25cm,CD=15cm,BC=35cm.动点M在AD边上以2cm/秒的速度由A向D运动;动点N在CB上以3cm/秒的速度由C向B运动,若点M,N分别从A,C同时出发,当其中一点到达端点时,另一点也随之停止运动,假设运动时间为t秒,问:(1)当四边形ABNM是矩形时,求出t的值;(2)在某一时刻,是否存在MN=CD?若存在,则求出t的值;若不存在,说明理由.(南沙区)已知:P是正方形ABCD对角线AC上一点,PE⊥AB,PF⊥BC,E、F分别为垂足.(1)求证:DP=EF.(2)试判断DP与EF的位置关系并说明理由.(南沙区)如图,直线y=2x+2交y轴于A点,交x轴于C点,以O,A,C为顶点作矩形OABC,将矩形OABC绕O点顺时针旋转90°,得到矩形ODEF,直线AC交直线DF于G点.(1)求直线DF的解析式;(2)求证:GO平分∠CGD;(3)在角平分线GO上找一点M,使以点G、M、D为顶点的三角形是等腰直角三角形,求出M点坐标.菱形与正方形(白云区)能判定四边形是菱形的条件是()A.两条对角线相等 B.两条对角线相互垂直C.两条对角线相互垂直平分 D.两条对角线相等且垂直(番禺区)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点.若EF=2,则菱形ABCD的周长为()A.4 B.5 C.16 D.8+2(越秀区)如果菱形的两条对角线长分别为3和4,那么这个菱形的面积是()A.12 B.6 C.5 D.7(番禺区)正方形的一条对角线之长为4,则此正方形的面积是().(A)(B)8(C)(D)(白云区)如图,等边△ABE与正方形ABCD有一条共公边,点E在正方形外,连结DE,则∠BED=°.(天河区)如图,▱ABCD中已知E、F分别是BC、AD的中点,且AB⊥AC.求证:四边形AECF是菱形.(越秀区)如图,在Rt△ABC中,∠ACB=90°,AE平分∠BAC,交BC于点E,CD⊥AB于点D,EF⊥AB于点F,CD交AE于点G,CF交AE于点O.求证:四边形CGFE是菱形.(越秀区)如图,四边形ABCD为菱形,已知A(0,4),B(﹣3,0),点D在y轴上.求点D的坐标和对角线AC的长.(番禺区)如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=4,BC=6,求四边形OCED的周长和面积.(海珠区)如图,在△ABC中,点O是边AC上的一个动点,过O点作直线MN∥BC,设MN交∠ACB的角平分线于点E,交∠ACB外角的平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若∠BAC=45°,四边形AECF是正方形,求AO:BC的值.(南沙区)如图,等腰梯形ABCD中,AD∥BC,点E是线段AD上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探索四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段BC的关系,并证明你的结论.(南沙区)如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是()(﹣8,0) B.(0,8) C.(0,8) D.(0,16)(南沙区)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D.(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的关于AB、AC对称点分别为E、F,延长EB、FC相交于点G;(2)求证:四边形AEGF是正方形.(越秀区)如图1,四边形ABCD是由两个全等的等腰直角三角形斜边重合在一起组成的平面图形.如图2,点P是边BC上一点,PH⊥BC交BD于点H,连接AP交BD于点E,点F为DH中点,连接AF.(1)求证:四边形ABCD为正方形;(2)当点P在线段BC上运动时,∠PAF的大小是否会发生变化?若不变,请求出∠PAF的值;若变化,请说明理由;(3)求证:BE2+DF2=EF2.(番禺区)如图,在等腰△ACE中,已知CA=CE=2,AE=2c,点B、D、M分别是边AC、CE、AE的中点,以BC、CD为边长分别作正方形BCGF和CDHN,连结FM、FH、MH.(1)求△ACE的面积;(2)试探究△FMH是否是等腰直角三角形?并对结论给予证明;
(3)当∠GCN=30°时,求△FMH的面积.(越秀区)已知正方形ABCD的边长为a,EF∥GH,且EF与GH之间的距离等于a.(1)如图1,若EF经过A,GH与BC、CD分别交于点I、J.作AP⊥GH,垂足为P.求证:△API≌△ABI,且∠IAJ=45°;(2)如图2,若EF与AD、AB分别相交于点K、L,GH与BC、CD分别相交于点I、J,IK与JL相交于点M.作KP⊥GH,垂足为P,作KQ⊥BC,垂足为Q.求证:△KPI≌△KQI,且∠IMJ=45°.中位线与斜边中线(海珠区)如图,矩形ABCD中,AB=6,BC=8,E是BC边上的一定点,P是CD边上的一动点(不与点C、D重合),M,N分别是AE、PE的中点,记MN的长度为a,在点P运动过程中,a不断变化,则a的取值范围是.(越秀区)在△ABC中,∠ABC=90°,AB=8,BC=6,D、E分别为AB、AC的中点,则BE+DE=()A.7 B.8 C.9 D.10(越秀区)如图,D、E分别是△ABC两边的中点,△ADE的面积记为S1,四边形DBCE的面积记为S2,则下列结论正确的是()A.S1=S2 B.S2=2S1 C.S2=3S1 D.S2=4S1中点四边形(白云区)顺次连结正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工现场造价管理服务合同
- 拍卖双方协议生效条件
- 热水器采购销售合同
- 2025-2030年中国金铜卡复合膜行业深度研究分析报告
- 2025-2030年中国微孔弹性体行业深度研究分析报告
- 2025年中国3D电视行业市场评估分析及发展前景调研战略研究报告
- 中国环保产业装备行业市场调研分析及投资战略规划报告
- 产品研发协议
- 植物装饰租赁合同
- 2020-2025年中国牛奶行业发展前景预测及投资战略研究报告
- 无人机租赁的合同范本
- 《中国急性肾损伤临床实践指南(2023版)》解读
- 中国肿瘤药物治疗相关恶心呕吐防治专家共识(2022年版)解读
- GB 21258-2024燃煤发电机组单位产品能源消耗限额
- 建筑CAD赛项样题-绘图样题
- 《钢铁是怎样炼成的》读书分享 课件
- 抖音运营岗位劳务合同
- 卫生专业技术人员认定、聘用、管理、考核、奖惩制度
- 流行病学专业词汇中英文对照表
- 班本课程筷乐出发
- 农村生活污水治理项目可行性研究报告-是实施乡村振兴战略的重要举措
评论
0/150
提交评论