版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何大题同步练习解答题(共10小题)1.(2023•福建)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.2.(2023•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.3.(2023•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.4.(2023•北京)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(Ⅰ)求证:平面ABE⊥B1BCC1;(Ⅱ)求证:C1F∥平面ABE;(Ⅲ)求三棱锥E﹣ABC的体积.5.(2023•浦东新区一模)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.(1)求证:SA⊥CD;(2)求异面直线SB与CD所成角的大小.6.(2023•安徽模拟)如图:已知四棱锥P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:(1)PC∥平面EBD.(2)平面PBC⊥平面PCD.7.(2023•云南模拟)如图所示,在三棱锥P﹣ABC中,E、F分别为AC、BC的中点.(1)求证:EF∥平面PAB;(2)若PA=PB,CA=CB,求证:AB⊥PC.8.(2023•盐城二模)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;(2)求证:BE⊥平面PAC.9.(2023•苏州一模)如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.10.(2023•河西区三模)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1在平面BCD上的射影O恰好在CD上.(1)求证:BC⊥A1D;(2)求证:平面A1BC⊥平面A1BD;(3)求三棱锥A1﹣BCD的体积.立体几何大题同步练习参考答案与试题解析一.解答题(共10小题)1.(2023•福建)如图,三棱锥A﹣BCD中,AB⊥平面BCD,CD⊥BD.(Ⅰ)求证:CD⊥平面ABD;(Ⅱ)若AB=BD=CD=1,M为AD中点,求三棱锥A﹣MBC的体积.考点:直线与平面垂直的判定;棱柱、棱锥、棱台的体积.专题:综合题;空间位置关系与距离.分析:(Ⅰ)证明:CD⊥平面ABD,只需证明AB⊥CD;(Ⅱ)利用转换底面,VA﹣MBC=VC﹣ABM=S△ABM•CD,即可求出三棱锥A﹣MBC的体积.解答:(Ⅰ)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,∵CD⊥BD,AB∩BD=B,∴CD⊥平面ABD;(Ⅱ)解:∵AB⊥平面BCD,BD⊂平面BCD,∴AB⊥BD.∵AB=BD=1,∴S△ABD=,∵M为AD中点,∴S△ABM=S△ABD=,∵CD⊥平面ABD,∴VA﹣MBC=VC﹣ABM=S△ABM•CD=.点评:本题考查线面垂直,考查三棱锥A﹣MBC的体积,正确运用线面垂直的判定定理是关键.2.(2023•山东)如图,四棱锥P﹣ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分别为线段AD,PC的中点.(Ⅰ)求证:AP∥平面BEF;(Ⅱ)求证:BE⊥平面PAC.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)证明四边形ABCE是平行四边形,可得O是AC的中点,利用F为线段PC的中点,可得PA∥OF,从而可证AP∥平面BEF;(Ⅱ)证明BE⊥AP、BE⊥AC,即可证明BE⊥平面PAC.解答:证明:(Ⅰ)连接CE,则∵AD∥BC,BC=AD,E为线段AD的中点,∴四边形ABCE是平行四边形,BCDE是平行四边形,设AC∩BE=O,连接OF,则O是AC的中点,∵F为线段PC的中点,∴PA∥OF,∵PA⊄平面BEF,OF⊂平面BEF,∴AP∥平面BEF;(Ⅱ)∵BCDE是平行四边形,∴BE∥CD,∵AP⊥平面PCD,CD⊂平面PCD,∴AP⊥CD,∴BE⊥AP,∵AB=BC,四边形ABCE是平行四边形,∴四边形ABCE是菱形,∴BE⊥AC,∵AP∩AC=A,∴BE⊥平面PAC.点评:本题考查直线与平面平行、垂直的判定,考查学生分析解决问题的能力,正确运用直线与平面平行、垂直的判定是关键3.(2023•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.4.(2023•北京)如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(Ⅰ)求证:平面ABE⊥B1BCC1;(Ⅱ)求证:C1F∥平面ABE;(Ⅲ)求三棱锥E﹣ABC的体积.考点:平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)证明AB⊥B1BCC1,可得平面ABE⊥B1BCC1;(Ⅱ)证明C1F∥平面ABE,只需证明四边形FGEC1为平行四边形,可得C1F∥EG;(Ⅲ)利用VE﹣ABC=,可求三棱锥E﹣ABC的体积.解答:(Ⅰ)证明:∵三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,∴BB1⊥AB,∵AB⊥BC,BB1∩BC=B,∴AB⊥B1BCC1,∵AB⊂平面ABE,∴平面ABE⊥B1BCC1;(Ⅱ)证明:取AB中点G,连接EG,FG,则∵F是BC的中点,∴FG∥AC,FG=AC,∵E是A1C1的中点,∴FG∥EC1,FG=EC1,∴四边形FGEC1为平行四边形,∴C1F∥EG,∵C1F⊄平面ABE,EG⊂平面ABE,∴C1F∥平面ABE;(Ⅲ)解:∵AA1=AC=2,BC=1,AB⊥BC,∴AB=,∴VE﹣ABC===点评:本题考查线面平行、垂直的证明,考查三棱锥E﹣ABC的体积的计算,正确运用线面平行、垂直的判定定理是关键.5.(2023•浦东新区一模)如图,四棱锥S﹣ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.(1)求证:SA⊥CD;(2)求异面直线SB与CD所成角的大小.考点:异面直线及其所成的角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:(1)由线面垂直的性质可得CD⊥SD,结合正方形的性质可得CD⊥AD,可判CD⊥平面SDA,可得结论;(2)可得∠SBA或其补角是异面直线SB与CD所成角,在直角△SAB中可得tan∠SBA的值,由反三角函数可得.解答:解:(1)∵SD⊥平面ABCD,CD⊆平面ABCD,∴CD⊥SD,又∵四边形ABCD是正方形,∴CD⊥AD,又SD∩AD=D,∴CD⊥平面SDA,又∵SA⊆平面SDA,∴SA⊥CD(2)∵四边形ABCD是正方形,∴AB‖CD,∴∠SBA或其补角是异面直线SB与CD所成角,由(1)知BA⊥平面SDA,∴△SAB是直角三角形∴tan∠SBA===,∴∠SBA=arctan,故异面直线SB与CD所成角的大小为.点评:本题考查异面直线所成的角,涉及线面垂直的判定定理和反三角函数的应用,属中档题.6.(2023•安徽模拟)如图:已知四棱锥P﹣ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:(1)PC∥平面EBD.(2)平面PBC⊥平面PCD.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:综合题;空间位置关系与距离.分析:(1)连BD,与AC交于O,利用三角形的中位线,可得线线平行,从而可得线面平行;(2)证明BC⊥平面PCD,即可证得平面PBC⊥平面PCD.解答:证明:(1)连BD,与AC交于O,连接EO∵ABCD是正方形,∴O是AC的中点,∵E是PA的中点,∴EO∥PC又∵EO⊂平面EBD,PC⊄平面EBD∴PC∥平面EBD;(2)∵PD⊥平面ABCD,BC⊂平面ABCD∴BC⊥PD∵ABCD是正方形,∴BC⊥CD又∵PD∩CD=D∴BC⊥平面PCD∵BC⊂平面PBC∴平面PBC⊥平面PCD.点评:本题考查线面平行,考查面面平行,掌握线面平行,面面平行的判定方法是关键.7.(2023•云南模拟)如图所示,在三棱锥P﹣ABC中,E、F分别为AC、BC的中点.(1)求证:EF∥平面PAB;(2)若PA=PB,CA=CB,求证:AB⊥PC.考点:直线与平面平行的判定;空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:(1)依题意知E,F为中位线推断出EF∥AB,依据线面平行的判定定理推断出EF∥平面PAB.(2)取AB的中点G,连结PG,CG,根据PA=PB,CA=CB,判断出△PAB,△ACB均为等腰三角形进而可推断出AB⊥PG,AB⊥CG,利用线面垂直的判定定理得出AB⊥平面GPC,最后根据线面垂直的性质得出AB⊥PC的结论.解答:(1)证明:∵E,F为AC、BC的中点,∴EF∥AB,∵AB⊂平面PAB,EF⊄平面PAB,∴EF∥平面PAB.(2)证明:取AB的中点G,连结PG,CG,∵PA=PB,CA=CB,∴AB⊥PG,AB⊥CG,∵PG⊂平面GPC,CG⊂平面GPC,且PG∩CG=C,∴AB⊥平面GPC,∵PC⊂平面GPC,∴AB⊥PC.点评:本题主要考查了直线和平面平行的判定和直线与平面垂直的判定.综合考查了学生对基础知识的运用.8.(2023•盐城二模)如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.(1)求证:AP∥平面BDE;(2)求证:BE⊥平面PAC.考点:直线与平面平行的判定;直线与平面垂直的判定.专题:空间位置关系与距离.分析:(1)设AC∩BD=O,连结OE.根据ABCD为矩形,推断O是AC的中点,同时E是PC中点,推断出OE为中位线,即OE∥AP,再根据线面平行的判定定理AP⊄平面BDE,OE⊂平面BDE,推断出AP∥平面BDE.(2)根据已知平面PAB⊥平面ABCD,BC⊥AB,平面PAB∩平面ABCD=AB,推断BC⊥平面PAB.进而利用线面垂直性质知BC⊥PA,根据PB⊥PA,BC∩PB=B,BC,PB⊂平面PBC,推断出PA⊥平面PBC.进而知PA⊥BE,根据BP=PC,且E为PC中点,可知BE⊥PC,最后利用线面垂直的判定定理推断出BE⊥平面PAC.解答:证明:(1)设AC∩BD=O,连结OE.∵四边形ABCD为矩形,∴O是AC的中点.∵E是PC中点,∴OE∥AP.∵AP⊄平面BDE,OE⊂平面BDE,∴AP∥平面BDE.(2)∵平面PAB⊥平面ABCD,BC⊥AB,平面PAB∩平面ABCD=AB,∴BC⊥平面PAB.∵AP⊂平面PAB,∴BC⊥PA.∵PB⊥PA,BC∩PB=B,BC,PB⊂平面PBC,∴PA⊥平面PBC.∵BE⊂平面PBC,∴PA⊥BE.∵BP=PC,且E为PC中点,∴BE⊥PC.∵PA∩PC=P,PA,PC⊂平面PAC,∴BE⊥平面PAC.点评:本题主要考查了空间位置关系中,线面平行,线面垂直的判定.注意对线面平行,线面垂直的判定定理灵活运用,对线面平行和线面垂直的性质能熟练掌握.9.(2023•苏州一模)如图,在四棱锥P﹣ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:(1)PA∥平面MDB;(2)PD⊥BC.考点:直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)连接AC,交BD与点O,连接OM,先证明出MO∥PA,进而根据线面平行的判定定理证明出PA∥平面MDB.(2)先证明出BC⊥平面PCD,进而根据线面垂直的性质证明出BC⊥PD.解答:证明:(1)连接AC,交BD与点O,连接OM,∵M为PC的中点,O为AC的中点,∴MO∥PA,∵MO⊂平面MDB,PA⊄平面MDB,∴PA∥平面MDB.(2)∵平面PCD⊥平面ABCD,平面PCD∩平面ABCD=CD,BC⊂平面ABCD,BC⊥CD,∴BC⊥平面PCD,∵PD⊂平面PCD,∴BC⊥PD.点评:本题主要考查了线面平行的判定和线面垂直的判定.判定的关键是先找到到线线平行,线线垂直.10.(2023•河西区三模)如图,已知矩形ABCD中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《薄膜材料与器件》教学大纲
- 教科版品社四下全册教案(表格式)
- 玉溪师范学院《投资学》2023-2024学年第一学期期末试卷
- 玉溪师范学院《数值分析》2021-2022学年第一学期期末试卷
- 玉溪师范学院《酒店餐饮服务实训》2021-2022学年第一学期期末试卷
- 使用权资产折旧的账务处理-记账实操
- 2024年离合器面片项目评估分析报告
- 2023年流化床干燥设备项目评估分析报告
- 2023年户外机柜温控节能项目评估分析报告
- 草莓大棚买卖合同
- 《文化研究导论》全套教学课件
- 苏教版五年级上册数学计算题大全1000道带答案
- 民宿经济效益和社会效益分析报告
- 33 《鱼我所欲也》对比阅读-2024-2025中考语文文言文阅读专项训练(含答案)
- DL∕T 5370-2017 水电水利工程施工通 用安全技术规程
- DL∕T 1677-2016 电力工程用降阻接地模块技术条件
- 2024发展对象培训班考试试题与答案
- 2024中智集团总部及下属单位多岗位面向社会公开招聘7人【重点基础提升】模拟试题(共500题)附带答案详解
- 八年级足球“局部对抗情境下攻防技战术运用”主题大单元教学设计
- 乳腺癌术后出血的临床观察与护理干预
- 医疗肺结节科普宣教课件
评论
0/150
提交评论