下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列图形中既是中心对称图形又是轴对称图形的是()A. B. C. D.2.下列各组单项式中,不是同类项的一组是()A.和 B.和 C.和 D.和33.若,,则的值是()A.2 B.﹣2 C.4 D.﹣44.-4的绝对值是()A.4 B. C.-4 D.5.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A.85° B.105° C.125° D.160°6.已知函数y=的图象如图,当x≥﹣1时,y的取值范围是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥07.不等式组的解集在数轴上可表示为()A. B. C. D.8.如图,在平面直角坐标系中,位于第二象限,点的坐标是,先把向右平移3个单位长度得到,再把绕点顺时针旋转得到,则点的对应点的坐标是()A. B. C. D.9.如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A. B.C. D.10.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为()A. B.或C. D.或二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.12.如果某数的一个平方根是﹣5,那么这个数是_____.13.如图,△ABC内接于⊙O,AB是⊙O的直径,点D在圆O上,BD=CD,AB=10,AC=6,连接OD交BC于点E,DE=______.14.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.15.如图,在△ABC中,∠ACB=90°,点D是CB边上一点,过点D作DE⊥AB于点E,点F是AD的中点,连结EF、FC、CE.若AD=2,∠CFE=90°,则CE=_____.16.如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.三、解答题(共8题,共72分)17.(8分)如图,已知,,.求证:.18.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.19.(8分)如图,水渠边有一棵大木瓜树,树干DO(不计粗细)上有两个木瓜A、B(不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O处于同一水平面的C处测得木瓜A的仰角为45°、木瓜B的仰角为30°.求C处到树干DO的距离CO.(结果精确到1米)(参考数据:,)20.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201821.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)△ABC的面积等于_____;(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.22.(10分)科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈,据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的格口,还会感应避让障碍物,自动归队取包裹.没电的时候还会自己找充电桩充电.某快递公司启用80台A种机器人、300台B种机器人分拣快递包裹.A,B两种机器人全部投入工作,1小时共可以分拣1.44万件包裹,若全部A种机器人工作3小时,全部B种机器人工作2小时,一共可以分拣3.12万件包裹.(1)求两种机器人每台每小时各分拣多少件包裹;(2)为了进一步提高效率,快递公司计划再购进A,B两种机器人共200台,若要保证新购进的这批机器人每小时的总分拣量不少于7000件,求最多应购进A种机器人多少台?23.(12分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.评估成绩n(分)
评定等级
频数
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根据以上信息解答下列问题:(1)求m的值;(2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)(3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.24.如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A、是轴对称图形,不是中心对称图形,故A错误;B、是轴对称图形,不是中心对称图形,故B错误;C、既是轴对称图形,也是中心对称图形,故C正确;D、既不是轴对称图形,也不是中心对称图形,故D错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.2、A【解析】
如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点.3、D【解析】因为,所以,因为,故选D.4、A【解析】
根据绝对值的概念计算即可.(绝对值是指一个数在坐标轴上所对应点到原点的距离叫做这个数的绝对值.)【详解】根据绝对值的概念可得-4的绝对值为4.【点睛】错因分析:容易题.选错的原因是对实数的相关概念没有掌握,与倒数、相反数的概念混淆.5、C【解析】
首先求得AB与正东方向的夹角的度数,即可求解.【详解】根据题意得:∠BAC=(90°﹣70°)+15°+90°=125°,故选:C.【点睛】本题考查了方向角,正确理解方向角的定义是关键.6、C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大7、A【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:∵不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.8、D【解析】
根据要求画出图形,即可解决问题.【详解】解:根据题意,作出图形,如图:观察图象可知:A2(4,2);故选:D.【点睛】本题考查平移变换,旋转变换等知识,解题的关键是正确画出图象,属于中考常考题型.9、D【解析】解:(1)当0≤t≤2a时,∵,AP=x,∴;(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.10、B【解析】分析:根据位似变换的性质计算即可.详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故选B.点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.二、填空题(本大题共6个小题,每小题3分,共18分)11、,+2.【解析】
当点P旋转至CA的延长线上时,CP=20,BC=2,利用勾股定理求出BP,再根据直角三角形斜边上的中线等于斜边的一半,可得CF的长;取AB的中点M,连接MF和CM,根据直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得FM的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【详解】当点P旋转至CA的延长线上时,如图2.∵在直角△BCP中,∠BCP=90°,CP=AC+AP=6+4=20,BC=2,∴BP=,∵BP的中点是F,∴CF=BP=.取AB的中点M,连接MF和CM,如图2.∵在直角△ABC中,∠ACB=90°,AC=6,BC=2,∴AB=2.∵M为AB中点,∴CM=AB=,∵将线段AD绕点A按顺时针方向旋转,点D的对应点是点P,∴AP=AD=4,∵M为AB中点,F为BP中点,∴FM=AP=2.当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=+2.故答案为,+2.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.12、25【解析】
利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.13、1【解析】
先利用垂径定理得到OD⊥BC,则BE=CE,再证明OE为△ABC的中位线得到,入境计算OD−OE即可.【详解】解:∵BD=CD,∴,∴OD⊥BC,∴BE=CE,而OA=OB,∴OE为△ABC的中位线,∴,∴DE=OD-OE=5-3=1.故答案为1.【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.14、(x﹣1)(x﹣2)【解析】
根据方程的两根,可以将方程化为:a(x﹣x1)(x﹣x2)=0(a≠0)的形式,对比原方程即可得到所求代数式的因式分解的结果.【详解】解:已知方程的两根为:x1=1,x2=2,可得:(x﹣1)(x﹣2)=0,∴x2+bx+c=(x﹣1)(x﹣2),故答案为:(x﹣1)(x﹣2).【点睛】一元二次方程ax2+bx+c=0(a≠0,a、b、c是常数),若方程的两根是x1和x2,则ax2+bx+c=a(x﹣x1)(x﹣x2)15、【解析】
根据直角三角形的中点性质结合勾股定理解答即可.【详解】解:,点F是AD的中点,.故答案为:.【点睛】此题重点考查学生对勾股定理的理解。熟练掌握勾股定理是解题的关键.16、1【解析】
根据题意,画出示意图,易得:Rt△EDC∽Rt△FDC,进而可得;即DC2=ED?FD,代入数据可得答案.【详解】根据题意,作△EFC,树高为CD,且∠ECF=90°,ED=3,FD=12,易得:Rt△EDC∽Rt△DCF,有,即DC2=ED×FD,代入数据可得DC2=31,DC=1,故答案为1.三、解答题(共8题,共72分)17、证明见解析.【解析】
根据等式的基本性质可得,然后利用SAS即可证出,从而证出结论.【详解】证明:,,即,在和中,,,.【点睛】此题考查的是全等三角形的判定及性质,掌握利用SAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.18、(1)见解析;(2)见解析;【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.19、解:设OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C处到树干DO的距离CO为5米.【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.【分析】设OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt△BOC中,由于∠BCO=30°,故,再根据AB=OA-OB=2即可得出结论.20、-1【解析】
原式利用乘方的意义,特殊角的三角函数值,零指数幂法则计算即可求出值.【详解】解:原式=﹣4+1+1+1=﹣1.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21、6作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G【解析】
(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.【详解】解:(1)4×3÷2=6,故△ABC的面积等于6.(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.
故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.22、(1)A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹(2)最多应购进A种机器人100台【解析】
(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,根据题意列方程组即可得到结论;(2)设最多应购进A种机器人a台,购进B种机器人(200−a)台,由题意得,根据题意两不等式即可得到结论.【详解】(1)A种机器人每台每小时各分拣x件包裹,B种机器人每台每小时各分拣y件包裹,由题意得,,解得,,答:A种机器人每台每小时各分拣30件包裹,B种机器人每台每小时各分拣40件包裹;(2)设最多应购进A种机器人a台,购进B种机器人(200﹣a)台,由题意得,30a+40(200﹣a)≥7000,解得:a≤100,则最多应购进A种机器人100台.【点睛】本题考查了二元一次方程组,一元一次不等式的应用,正确的理解题意是解题的关键.23、(1)25;(2)8°48′;(3)56【解析】试题分析:(1)由C等级频数为1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- NS4591-生命科学试剂-MCE
- 藏文基础-教你轻轻松松学藏语知到智慧树章节测试课后答案2024年秋西藏大学
- 唐山海运职业学院《中国历史文献学》2023-2024学年第一学期期末试卷
- 唐山工业职业技术学院《网店运营实务》2023-2024学年第一学期期末试卷
- 休学申请书集锦9篇
- 信用卡工作证明
- 2023年自动气体灭火系统项目融资渠道探索
- 第二课 我向国旗敬个礼 第一课时 教学实录-2024-2025学年道德与法治一年级上册统编版
- 中国轻质原油项目投资可行性研究报告
- Module 5 Unit 2 What are the kids playing (教学实录)-2023-2024学年外研版(一起)英语二年级下册
- PDCA循环培训课件
- MOOC 中级会计学-中南财经政法大学 中国大学慕课答案
- 中国饮食文化智慧树知到期末考试答案2024年
- 《电力勘测设计企业安全生产标准化实施规范》
- 第五单元《京腔昆韵》-欣赏 ☆姹紫嫣红 课件- 2023-2024学年人音版初中音乐八年级下册
- 国家粮食和物资储备局招聘考试试题及答案
- 宿舍零食盒子项目策划
- 糖尿病治疗研究进展
- 工业互联网标准体系(版本3.0)
- 山东省菏泽市10校2023-2024学年高二上学期期末联考地理试题(含答案解析)
- 初一数学期中考试分析
评论
0/150
提交评论