2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】_第1页
2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】_第2页
2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】_第3页
2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】_第4页
2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年教师资格之中学数学学科知识与教学能力题库内部题库及答案【最新】第一部分单选题(50题)1、新课程标准将义务教育阶段的数学课程目标分为()。

A.过程性目标和结果性目标

B.总体目标和学段目标

C.学段目标和过程性目标

D.总体目标和结果性目标

【答案】:B

2、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下3.0cm,肝肋下1.5cm。检验:血红蛋白量150g/L,血小板数1100×10

A.慢性中性粒细胞白血病

B.骨髓增生性疾病

C.原发性血小板增多症

D.慢性粒细胞白血病

E.继发性血小板增多症

【答案】:C

3、教学方法中的发现式教学法又叫()教学法

A.习惯

B.态度

C.学习

D.问题

【答案】:D

4、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是()。

A.外离

B.外切

C.相交

D.内切

【答案】:B

5、在集合、三角函数、导数及其应用、平面向量和空间向量五个内容中,属于高中数学必修课程内容的有()

A.1个

B.2个

C.3个

D.4个

【答案】:C

6、男,45岁,因骨盆骨折住院。X线检查发现多部位溶骨性病变。实验室检查:骨髓浆细胞占25%,血沉50mm/h,血红蛋白为80g/L,尿本周蛋白阳性,血清蛋白电泳呈现M蛋白,血清免疫球蛋白含量IgG8g/L、IgA12g/L、IgM0.2g/L。如进一步对该患者进行分型,则应为

A.IgG型

B.IgA型

C.IgD型

D.IgE型

E.非分泌型

【答案】:B

7、下列对向量学习意义的描述:

A.1条

B.2条

C.3条

D.4条

【答案】:D

8、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所需的数学的基础知识、基本技能、基本思想和()

A.基本方法

B.基本思维方式

C.基本学习方法

D.基本活动经验

【答案】:D

9、男性,10岁,发热1周,并有咽喉痛,最近两天皮肤有皮疹。体检:颈部及腋下浅表淋巴结肿大,肝肋下未及,脾肋下1cm。入院时血常规结果为:血红蛋白量113g/L:白细胞数8×10

A.涂抹细胞

B.异型淋巴细胞

C.淋巴瘤细胞

D.原始及幼稚淋巴细胞

E.异常组织细胞

【答案】:B

10、特发性血小板减少性紫癜的原因主要是

A.DIC

B.遗传性血小板功能异常

C.抗血小板自身抗体

D.血小板第3因子缺乏

E.血小板生成减少

【答案】:C

11、NO是

A.激活血小板物质

B.舒血管物质

C.调节血液凝固物质

D.缩血管物质

E.既有舒血管又能缩血管的物质

【答案】:B

12、Goodpasture综合征属于

A.Ⅰ型超敏反应

B.Ⅱ型超敏反应

C.Ⅲ型超敏反应

D.Ⅳ型超敏反应

E.以上均正确

【答案】:B

13、肌动蛋白(actin)细丝存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:A

14、下面哪位不是数学家?()

A.祖冲之

B.秦九韶

C.孙思邈

D.杨辉

【答案】:C

15、《学记》提出“时教必有正业,退息必有居学”,这句话强调()。

A.课内与课外相结合

B.德育与智育相结合

C.教师与学生相结合

D.教师与家长相结合

【答案】:A

16、Westgard质控处理规则的应用可以找出的误差是

A.系统误差

B.随机误差

C.系统误差和随机误差

D.偶然误差

E.以上都不是

【答案】:C

17、淋巴细胞活力的表示常用

A.活细胞占总细胞的百分比

B.活细胞浓度

C.淋巴细胞浓度

D.活细胞与总细胞的比值

E.白细胞浓度

【答案】:A

18、下列哪种物质是血小板膜上的纤维蛋白原受体

A.GPⅡb/Ⅲa

B.GPIV

C.GPV

D.GPb-复合物

E.GPIa

【答案】:A

19、干细胞培养中常将50个或大于50个的细胞团称为

A.集落

B.微丛

C.小丛

D.大丛

E.集团

【答案】:A

20、细胞因子诱导产物测定法目前最常用于测定

A.IL-1

B.INF

C.TNF

D.IL-6

E.IL-8

【答案】:A

21、下列哪些不是初中数学课程的核心概念()。

A.数感

B.空间观念

C.数据处理

D.推理能力

【答案】:C

22、流式细胞术是一种对单细胞或其他生物粒子膜表面以及内部的化学成分,进行定量分析和分选的检测技术,它可以高速分析上万个细胞,并能从一个细胞中测得多个参数,是目前最先进的细胞定量分析技术。流式细胞仪的主要组成不包括

A.液流系统

B.光路系统

C.抗原抗体系统

D.信号测量

E.细胞分选

【答案】:C

23、适应性免疫应答

A.具有特异性

B.时相是在感染后数分钟至96h

C.吞噬细胞是主要效应细胞

D.可遗传

E.先天获得

【答案】:A

24、贫血伴轻、中度黄疸,肝功能试验均正常,最可能的诊断为是

A.晚期肝硬化

B.脾功能亢进

C.溶血性贫血

D.ITP

E.急性白血病

【答案】:C

25、患者,男,51岁。尿频、尿痛间断发作2年,下腹隐痛、肛门坠胀1年。查体:肛门指诊双侧前列腺明显增大、压痛、质偏硬,中央沟变浅,肛门括约肌无松弛。前列腺液生化检查锌含量为1.76mmol/L,B超显示前列腺增大。患者最可能的诊断是

A.急性前列腺炎

B.慢性前列腺炎

C.前列腺癌

D.良性前列腺增生

E.前列腺结核

【答案】:B

26、下列属于获得性溶血性贫血的疾病是

A.冷凝集素综合征

B.珠蛋白生成障碍性贫血

C.葡萄糖磷酸异构酶缺陷症

D.遗传性椭圆形红细胞增多症

E.遗传性口形红细胞增多症

【答案】:A

27、数据分析是高中数学学科素养之一,数据分析过程主要包括()。

A.收集数据,整理数据,提取信息,进行推断,获得结论

B.收集数据,整理数据,提取信息,构建模型,进行推断,获得结论

C.收集数据,提取信息,构建模型,进行推断,获得结论

D.收集数据,整理数据,构建模型,进行推断,获得结论

【答案】:B

28、设f(x)=acosx+bsinx是R到R的函数,V={f(x)|f(x)=acosx+bsinx,a,b∈R}是线性空间,则V的维数是()。

A.1

B.2

C.3

D.∞

【答案】:B

29、患者,女,35岁。发热、咽痛1天。查体:扁桃体Ⅱ度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。血细菌培养发现A群B溶血性链球菌阳性,尿蛋白(++),尿红细胞(++)。初步诊断为链球菌感染后急性肾小球肾炎。对诊断急性肾小球肾炎最有价值的是

A.血清AS01200IU/ml

B.血清肌酐18μmol/L

C.血清BUN13.8mmol/L

D.血清补体C

E.尿纤维蛋白降解产物显著增高

【答案】:D

30、疑似患有免疫增殖病的初诊应做

A.血清蛋白区带电泳

B.免疫电泳

C.免疫固定电泳

D.免疫球蛋白的定量测定

E.尿本周蛋白检测

【答案】:D

31、男性,65岁,手脚麻木伴头晕3个月,并时常有鼻出血。体检:脾肋下3.0cm,肝肋下1.5cm。检验:血红蛋白量150g/L,血小板数1100×10

A.凝血因子减少

B.鼻黏膜炎症

C.血小板功能异常

D.鼻黏膜下血管畸形

E.血小板数增多

【答案】:C

32、可由分子模拟而导致自身免疫性疾病的病原体有()

A.金黄色葡萄球菌

B.伤寒杆菌

C.溶血性链球菌

D.大肠杆菌

E.痢疾杆菌

【答案】:C

33、室间质控应在下列哪项基础上进一步实施

A.愈小愈好

B.先进设备

C.室内质控

D.在允许误差内

E.质控试剂

【答案】:C

34、B细胞成为抗原呈递细胞主要是由于

A.分泌大量IL-2的能力

B.表达MHC-Ⅱ类抗原

C.在骨髓内发育成熟的

D.在肠道淋巴样组织中大量存在

E.吞噬能力

【答案】:B

35、性连锁高IgM综合征是由于()

A.T细胞缺陷

B.B细胞免疫功能缺陷

C.体液免疫功能低下

D.活化T细胞CD40L突变

E.白细胞黏附缺陷

【答案】:D

36、在高等代数中,有一个线性变换叫做正交变换,即不改变任意两点的距离的变换。下列变换中不是正交变换的是()。

A.平移变换

B.旋转变换

C.反射变换

D.相似变换

【答案】:D

37、内源凝血途径的始动因子是下列哪一个

A.Ⅹ

B.Ⅷ

C.因子Ⅸ

D.Ⅻ

E.ⅩⅢ

【答案】:D

38、内源凝血途径的始动因子是下列哪一个()

A.因子Ⅷ

B.因子Ⅹ

C.因子Ⅻ

D.因子

E.因子Ⅺ

【答案】:C

39、Ⅳ型超敏反应中最重要的细胞是

A.B细胞

B.肥大细胞

C.CD4

D.嗜酸性粒细胞

E.嗜碱性粒细胞

【答案】:C

40、患儿,男,7岁。患血友病5年,多次使用Ⅶ因子进行治疗,近2个月反复发热,口服抗生素治疗无效。实验室检查:Anti-HIV阳性。选择符合HIV诊断的结果

A.CD4T细胞↓,CD8T细胞↓,CD4/CD8正常

B.CD4细胞↓,CD8T细胞正常,CD4/CD8↓

C.CD4T细胞正常,CD8T细胞↓,CD4/CD8↑

D.CD4T细胞↑,CD8T细胞正常,CD4/CD8↑

E.CD4T细胞正常,CD8T细胞↑,CD4/CD8↓

【答案】:B

41、典型的T细胞缺陷型疾病半甲状腺功能低下的是

A.选择性IgA缺陷病

B.先天性胸腺发育不全综合征

C.遗传性血管神经性水肿

D.慢性肉芽肿病

E.阵发性夜间血红蛋白尿

【答案】:B

42、下列命题不正确的是()

A.有理数集对于乘法运算封闭

B.有理数可以比较大小

C.有理数集是实数集的子集

D.有理数集不是复数集的子集

【答案】:D

43、骨髓涂片中见异常幼稚细胞占40%,这些细胞的化学染色结果分别是:POX(-),SB(-),AS-D-NCE(-),α-NBE(+),且不被NaF抑制,下列最佳选择是

A.急性单核细胞性白血病

B.组织细胞性白血病

C.急性粒细胞性白血病

D.急性早幼粒白血病

E.粒-单细胞性白血病

【答案】:B

44、下列哪种物质是血小板膜上的纤维蛋白原受体

A.GPⅡb/Ⅲa

B.GPIV

C.GPV

D.GPb-复合物

E.GPIa

【答案】:A

45、与意大利传教士利玛窦共同翻译了《几何原本》(I—Ⅵ卷)的我国数学家是()。

A.徐光启

B.刘徽

C.祖冲之

D.杨辉

【答案】:A

46、ELISA是利用酶催化反应的特性来检测和定量分析免疫反应。ELISA中常用的供氢体底物

A.叠氮钠

B.邻苯二胺

C.联苯胺

D.硫酸胺

E.过碘酸钠

【答案】:B

47、前列腺癌的标志

A.AFP

B.CEA

C.PSA

D.CA125

E.CA15-3

【答案】:C

48、辅助性T细胞的标志性抗原为

A.CD3

B.CD3

C.CD3

D.CD3

E.CD3

【答案】:A

49、下列选项中,()属于影响初中数学课程的社会发展因素。

A.数学的知识、方法和意义

B.从教育的角度对数学所形成的价值认识

C.学生的知识、经验和环境背景

D.当代社会的科学技术、人文精神中蕴含的数学知识与素养等

【答案】:D

50、义务教育课程的总目标是从()方面进行阐述的。

A.认识,理解,掌握和解决问题

B.基础知识,基础技能,问题解决和情感

C.知识,技能,问题解决,情感态度价值观

D.知识与技能,数学思考,问题解决和情感态度

【答案】:D

第二部分多选题(50题)1、以《普通高中课程标准实验教科书·数学1》(必修)第一章“集合与函数概念”的设计为例,回答下列问题:(1)从分析集合语言的意义入手,说明为什么把它安排在高中数学的起始章;(6分)(2)说明高中阶段对函数概念的处理方法;(4分)(3)给出本章课程的学习目标;(8分)(4)简要给出集合主要内容的教学设计思路与方法。(12分)

【答案】:

2、下列描述为演绎推理的是()。

A.从一般到特殊的推理

B.从特殊到一般的推理

C.通过实验验证结论的推理

D.通过观察猜想得到结论的推理

【答案】:A

3、肌动蛋白(actin)细丝存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:A

4、正常情况下血液中不存在的是

A.因子Ⅲ

B.因子Ⅴ

C.因子Ⅰ

D.因子Ⅹ

E.因子Ⅸ

【答案】:A

5、ATP存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:A

6、内、外源性凝血系统形成凝血活酶时,都需要的因子是

A.因子Ⅲ

B.因子Ⅴ

C.因子Ⅰ

D.因子Ⅹ

E.因子Ⅸ

【答案】:D

7、案例:面对课堂上出现的各种各样的意外生成,教师如何正确应对,如何让这些生成为我们高效的课堂教学服务.如何把自己课前的预设和课堂上的生成有效融合,从而实现教学效果的最大化.这是教师时刻面临的问题。在一次听课中有下面的一个教学片段:教师在介绍完中住线的概念后,布置了一个操作探究活动。师:大家把手中的三角形纸片沿其一条中位线剪开,并用剪得的纸片拼出一个四边形,由这个活动你可以得到哪些和中位线有关的结论学生正准备动手操作,一名学生举起了手。生:我不剪彩纸也知道结论。师:你知道什么结论生:三角形的中位线平行于第三边并等于第三边的一半。教师没有想到会出现这么个“程咬金”,脸冷了下来:“你怎么知道的”生:我昨天预习了,书上这么说的。师:就你聪明。坐下!后面的教学是在沉闷的气氛中进行的学生操作完成后再也不敢举手发言了。问题:(1)结合上面这位教师的教学过程,简要做出评析;(10分)(2)结合你的教学经历,说明如何处理好课堂上的意外生成。(10分)

【答案】:(1)在课堂上,教师面对的是一群有着不同生活经历、有自己的想法。在很多方面存在差异的生命体,也正是因为有这种差异,课堂才是充满变化、丰富多彩的,教师如果不能适应这种变化,不能及时正确处理课堂的生成,那么其课堂效果将很难保证是高效的。在上面的教学片段中教师对学生直接说出中位线的性质很是不满,因为这样一来教师后面设计好的精彩探索活动就没有必要再进行了。碰上这样的意外,教师采取了生硬的处理方式。让其他学生继续探索,但此时教师的不满情绪和处理这件事情的方式使得全班同学失去了探索的兴趣和发言的勇气。教师如果换一种方式,先表扬发言学生“你真是个爱学习的学生,我相信你还是个爱思考的学生!”然后让他和大家一道动手操作、探索、验证中位线为什么会具有这样的性质,课堂效果应该更好。(2)生成从性质角度来说,有积极的一面,也有消极的一面,从效果角度来说有有效的一面,也有无效的一面。教师在课堂上要充分发挥好自己组织者的角色,不断地捕捉、判断、重组课堂教学中从学生那里涌现出来的各种各种各类信息,并能快速断定哪些生成对教学是有效的,哪些生成是偏离了教学目标,一名优秀的数学教师应该能够正确应对课堂上出现的各种各样生成,使之为我们的数学教学服务,提高课堂教学的效果。

8、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)

【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。

9、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。

【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.

10、函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。(8分)

【答案】:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。

11、推理一般包括合情推理与演绎推理。(1)请分别阐述合情推理与演绎推理的含义;(6分)(2)举例说明合情推理与演绎推理在解决数学问题中的作用(6分),并阐述两者之间的关系。(3分)

【答案】:本题主要考查合情推理与演绎推理的概念及关系。

12、创立解析几何的主要数学家是().

A.笛卡尔,费马

B.笛卡尔,拉格朗日

C.莱布尼茨,牛顿

D.柯西,牛顿

【答案】:A

13、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)

【答案】:(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。

14、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例

2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;(7分)(4)设计“推广例1所探究的规律”的主要教学过程。(7分)

【答案】:本题主要考查考生对于新授课教学设计的能力。

15、儿茶酚胺是

A.激活血小板物质

B.舒血管物质

C.调节血液凝固物质

D.缩血管物质

E.既有舒血管又能缩血管的物质

【答案】:D

16、患者,女,35岁。发热、咽痛1天。查体:扁桃体Ⅱ度肿大,有脓点。实验室检查:血清ASO水平为300U/ml,10天后血清ASO水平上升到1200IU/ml。诊断:急性化脓性扁桃体。尿蛋白电泳发现以清蛋白增高为主,其蛋白尿的类型为

A.肾小管性蛋白尿

B.肾小球性蛋白尿

C.混合性蛋白尿

D.溢出性蛋白尿

E.生理性蛋白尿

【答案】:B

17、数学的产生与发展过程蕴含着丰富的数学文化。(1)以“勾股定理”教学为例,说明在数学教学中如何渗透数学文化。(2)阐述数学文化对学生数学学习的作用。

【答案】:本题考查数学文化在数学教学过程中的渗透。数学文化包含数学思想、数学思维方式和数学相关历史材料等方面。

18、丝氨酸蛋白酶抑制因子是

A.血栓收缩蛋白

B.ADP、血栓烷A

C.α

D.GPⅡb或GPⅠa

E.蛋白C.血栓调节蛋白、活化蛋白C抑制物

【答案】:C

19、一级结构为对称性二聚体的是

A.因子Ⅲ

B.因子Ⅴ

C.因子Ⅰ

D.因子Ⅹ

E.因子Ⅸ

【答案】:C

20、人体内最不稳定的凝血因子是

A.因子Ⅲ

B.因子Ⅴ

C.因子Ⅰ

D.因子Ⅹ

E.因子Ⅸ

【答案】:B

21、日本学者Tonegawa最初证明BCR在形成过程中()

A.体细胞突变

B.N-插入

C.重链和轻链随机重组

D.可变区基因片段随机重排

E.类别转换

【答案】:D

22、NO是

A.激活血小板物质

B.舒血管物质

C.调节血液凝固物质

D.缩血管物质

E.既有舒血管又能缩血管的物质

【答案】:B

23、下列是三位教师对“等比数列概念”引入的教学片段。

【教师甲】

用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?

【教师乙】

以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?

【教师丙】

以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。

【答案】:

24、下列是三位教师对“等比数列概念”引入的教学片段。

【教师甲】

用实例引入,选了一个增长率的问题,有某国企随着体制改革和技术革新,给国家创造的利税逐年增加,下面是近几年的利税值(万元):1000,1100,1210,1331,……,如果按照这个规律发展下去,下一年会给国家创造多少利税呢?

【教师乙】

以具体的等比数列引入,先给出四个数列。1,2,4,8,16,…1,-1,1,-1,1,…-4,2,-1,…1,1,l,1,1,…由同学们自己去研究,这四个数列中,每个数列相邻两项之间有什么关系?这四个数列有什么共同点?

【教师丙】

以等差数列引入,开门见山,明确地告诉学生,“今天我们这节课学习等比数列,它与等差数列有密切的联系,同学们完全可以根据已学过的等差数列来研究等比数列。”什么样的数列叫等差数列?你能类比猜想什么是等比数列吗?列举出一两个例子,试说出它的定义。问题:(1)请分析三位教师教学引入片段的特点?(2)在(1)的基础上,谈谈你对课题引入的观点。

【答案】:

25、患者,女,25岁。因咳嗽、发热7天就诊。查体T37.8℃,右上肺闻及啰音,胸片示右肺上叶见片状阴影。结核菌素试验:红肿直径大于20mm。该患者可能为

A.对结核分枝杆菌无免疫力

B.处于结核病恢复期

C.处于结核病活动期

D.注射过卡介苗

E.处于结核分枝杆菌早期感染

【答案】:C

26、案例:下面是一道鸡兔同笼问题:一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整l7,多少小兔多少鸡解法一:用算术方法:思路:如果没有小兔,那么小鸡为17只,总的腿数应为34条,但现在有48条腿,造成腿的数目不够是由于小兔的数目是O,每有一只小兔便会增加两条腿,敌应有(48—17×2)÷2=7只小兔。相应地,小鸡有10只。解法二:用代数方法:可设有x只小鸡,y只小兔,则x+y=17①;2x+4y=48②。将第一个方程的两边同乘以-2加到第二个方程中去,得x+y=17;(4-2)y=48-17x2。解上述第二个方程得y=7,把y=7代入第一个方程得x=10。所以有10只小鸡.7只小兔。问题:(1)试说明这两种解法所体现的算法思想;(10分)(2)试说明这两种算法的共同点。(10分)

【答案】:(1)解法一所体现的算法是:S1假设没有小兔.则小鸡应为n只;S2计算总腿数为2n只;S3计算实际总腿数m与假设总腿数2n的差值m-2n;S4计算小兔只数为(m-2n)÷2;S5小鸡的只数为n-(m-2n)÷2;解法二所体现的算法是:S1设未知数S2根据题意列方程组;S3解方程组:S4还原实际问题,得到实际问题的答案。(2)不论在哪一种算法中,它们都是经有限次步骤完成的,因而它们体现了算法的有穷性。在算法中,第一步都能明确地执行,且有确定的结果,因此具有确定性。在所有算法中,每一步操作都是可以执行的,也就是具有可行性。算法解决的都是一类问题,因此具有普适性。

27、肌动蛋白(actin)细丝存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:A

28、一级结构为对称性二聚体的是

A.因子Ⅲ

B.因子Ⅴ

C.因子Ⅰ

D.因子Ⅹ

E.因子Ⅸ

【答案】:C

29、外周免疫器官包括

A.脾脏、淋巴结、其他淋巴组织

B.扁桃腺、骨髓、淋巴结

C.淋巴结、骨髓、脾脏

D.胸腺、脾脏、粘膜、淋巴组织

E.腔上囊、脾脏、

【答案】:A

30、下面是某位老师引入“负数”概念的教学片段。师:我们当地7月份的平均气温是零上28℃,l月份的平均气温是零下3℃,问7月份的平均气温比1月份的平均气温高几度如何列式计算生:用零上28℃减去零下3℃,得到的答案是31℃。师:答案没错,算式呢生:文字与数字混在一起,一点也不美观。生:零上28℃,我们常说成28℃,可用28表示,但是零下3℃不能说成3℃呀!也就不能用3表示。师:大家的发言很有道理,如何解决这一系列的矛盾呢看样子有必要引入一个新数来表示零下3c℃。这时,零下3℃就可写成-3℃,-3就是负数。问题:(1)对该教师情境创设的合理性作出解释;(2)在引入数学概念时,结合上述案例,说说教师创设情境要考虑哪些因素

【答案】:(1)在这段教学中,教师没有将负数的概念强压给学生,而是设计了计算温度这个情境,让学生自己参与计算活动,发现其中的困惑,从而产生学习新数学概念的意愿。教师只是从中提炼出学生的想法,并进一步上升为数学知识——负数。这样,负数概念的提出,成为了学生的自觉行为。学生对负数概念的引入有了较深的思想基础,就会认识到学习负数的必要性,为学好负数奠定了基础。(2)引入数学概念是教学的开始,学生能否掌握好这个概念,与教师引入的艺术是密切联系的。因此,在引人数学概念时,要考虑下面的因素。①学习的必要性。引入新概念时,教师应创设一个引入概念的情境,让学生在情境中领会概念产生的必要性。②内容的实质性。引入数学概念时,教师所选用的实例要反映概念的本质,不要让太多的无关因素干扰了学生学习的注意力,影响数学概念的形成。③数量的适量性。在引入概念时,教师一般要举出一些例子,以便加深学生对概念的初步认识。④实例的趣味性。教师在选用例子进行概念教学时,要注意例子的生动有趣,要能引发学生的学习兴趣。教师要尽量结合学生的生活实际或者选择学生非常熟悉与非常感兴趣的问题作为例子。

31、下面给出“变量与函数”一节的教学片段:创设情境,导入新课教师:同学们,从小学步入初中到现在的八年级这段时间里,你发生了哪些变化学生:年龄增长了;个子长高了;知识增多了;体重增加了;课教学设计中存在的不足之处,以及在进行知识技能教学时应该坚持的基本原则。

【答案】:本节课的教学设计对于知识技能教学属于反面案例,主要不足之处有两点:(1)创设情境的目的应该为当节课的教学内容服务,本节课应该指向引入“变量”的概念,教师在引入环节中,只注重了变量的特征之一“变”,却忽视了“在一个变化过程中”这一变量的前提条件,而这一条件对学生进一步理解变量及函数的概念至关重要.(2)一个新的数学概念的建立必须经历一个由粗浅到精致,由不完整到严谨的过程,同时要注重引导学生理解其中的关键词的含义,还应通过适当数量的正反例揭示概念的内涵与外延,否则概念的建立是没有联系的,也是不稳定的.同时,数学概念的理解应该让学生用自己的语言复述,而不是简单的死记硬背.在进行知识技能教学时应该坚持的基本原则有:(1)体现生成性;(2)展现建构性;(3)注重过程性;(4)彰显主体性;(5)突出目标性.

32、再次免疫应答的主要抗体是

A.IgG

B.IgA

C.IgM

D.Ig

E.IgD

【答案】:A

33、下列语句是命题的是()。

A.①②

B.①③

C.②③

D.③④

【答案】:D

34、数据分析素养是课标要求培养的数学核心素养之一。(1)请说明数据分析的内涵,并简述数据分析的基本过程;(2)请在具体教学实践上说明如何培养学生的数据分析素养。

【答案】:

35、特种蛋白免疫分析仪是基于抗原-抗体反应原理,不溶性免疫复合物可使溶液浊度改变,再通过浊度检测标本中微量物质的分析方法。特种蛋白免疫分析仪根据监测角度的不同分为

A.免疫透射和散射浊度分析

B.免疫散射浊度分析

C.免疫透射浊度分析

D.免疫乳胶浊度分析

E.速率和终点散射浊度测定

【答案】:A

36、肝素酶存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:D

37、数学教育家弗赖登塔尔(Hans.Freudental)认为,人们在观察认识和改造客观世界的过程中,运用数学的思想和方法来分析和研究客观世界的种种现象,从客观世界的对象及其关系中抽象并形成数学的概念、法则和定理,以及为解决实际问题而构造的数学模型的过程,就是一种数学化的过程。(1)请举出一个实例,并简述其“数学化”的过程:(2)分析经历上述“数学化”过程对培养学生“发现问题,提出问题”以及“抽象概括”能力的作用。

【答案】:本题主要考查对“数学化”的理解。

38、ATP存在于

A.微丝

B.致密颗粒

C.α颗粒

D.溶酶体颗粒

E.微管

【答案】:A

39、严谨性与量力性相结合”是数学教学的基本原则。(1)简述“严谨性与量力性相结合”教学原则的内涵(3分);(2)初中数学教学中“负负得正”运算法则引入的方式有哪些?请写出至少两种(6分);(3)在初中“负负得正”运算法则的教学中,如何体现“严谨性与量力性相结合”的教学原则?(6分)

【答案】:本题主要考查严谨性与量力性的教学原则,以及课堂导入技巧的教学技能知识。(1)“严谨性与量力性相结合”教学原则的内涵是指数学逻辑的严密性及结论的精确性,在中学的数学理论中也不例外。所谓数学的严谨性,就是指对数学内容结论的叙述必须精确,结论的论证必须严格、周密,整个数学内容被组织成一个严谨的逻辑系统。教材有时对有些内容避而不谈,或用直观说明,或用不完全归纳法验证,或不必说明的作了说明,或扩大公理体系等,这些做法主要是考虑到学生的可接受性,估计降低内容的严谨性,让学生更好地掌握要学的数学内容。当前数学界提出的“淡化形式,注重实质”的口号实质上也是侧面反映出数学必须坚持严谨性与量力性相结合原则的问题。(2)初中数学教学中“负负得正”运算法则引入的方式可以从生活中的负数入手,举出两个引入的方式即可。(3)在初中“负负得正”运算法则的教学中,可以根据学生的认知水平和学生接受的难易程度入手,设法安排学生逐步适应的过程与机会,然后再利用一些数学模型解析“负负得正”运算法则,从而体现“严谨性与量力性相结合”的教学原则。

40、日本学者Tonegawa最初证明BCR在形成过程中()

A.体细胞突变

B.N-插入

C.重链和轻链随机重组

D.可变区基因片段随机重排

E.类别转换

【答案】:D

41、抛掷两粒正方体骰子(每个面上的点数分别为1,2,....6),假定每个面朝上的可能性相同,观察向上的点数,则点数之和等于5的概率为()

A.5/36

B.1/9

C.1/12

D.1/18

【答案】:B

42、《义务教育数学课程标准(2011年版)》附录中给出了两个例子:例1.计算15×15,25×25,…,95×95,并探索规律。例

2.证明例1所发现的规律。很明显例1计算所得到的乘积是一个三位数或者四位数,其中后两位数为25,而百位和千位上的数字存在这样的规律:1×2=2,2×3=6,3×4=12,…,这是“发现问题”的过程,在“发现问题”的基础上,需要尝试用语言符号表达规律,实现“提出问题”,进一步实现“分析问题”和“解决问题”。请根据上述内容,完成下列任务:(1)分别设计例1、例2的教学目标;(8分)(2)设计“提出问题”的主要教学过程;(8分)(3)设计“分析问题”和“解决问题”的主要教学过程;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论