




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit2:RationalFunctions
Lesson1:ReciprocalofaLinearFunctionUnit2:RationalFunctions
LesWhatisaRationalFunction?Anyfunctionoftheform:Wheref(x)andg(x)arepolynomialfunctionsBecausethedenominatorcanneverbezero,rationalfunctionshavepropertiesthatpolynomialfunctionsdonotWhatisaRationalFunction?AnWhatistheReciprocalofaLinearFunction?Wearegoingtostartbylookingatthesimplestrationalfunctions:ThisisthegeneralformforthereciprocalofalinearfunctionReciprocalmeansyouput“oneover”or,moresimply,you“flipit”WhatistheReciprocalofaLiExample1(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)Describetheendbehaviour(c)Whathappenswhenxgetscloseto½?Example1(a)UseyourTI-83orExample1:Solution(a)Example1:Solution(a)Example1:Solution(b)Asxgetslargeinboththepositiveandnegativedirections,thefunctiongetscloseto–butdoesnottouch–they-axis.Therefore,
Asx+∞,y0 Asx–∞,y0Example1:Solution(b)AsxgeExample1:SolutionStartontheleftofthegraphandmovetowardsx=½:they-valuesgetlargeandnegativeStartontherightofthegraphandmovetowardsx=½:they-valuesgetlargeandpositiveDenotedby:x½-,y-∞Denotedby:x½+,y+∞Approachx=½fromtherightApproachx=½fromtheleft(c)ThefunctionnevercrossesthisverticallineExample1:SolutionStartonthExample1:NotesAlinethatafunctiongetsclosetobutdoesnottouchiscalledanasymptoteThey-valuesgotclosetobutdidnottouchthey-axis(ahorizontalline)horizontalasymptoteistheliney=0Thereciprocalofalinearfunctionwillalwayshaveahorizontalasymptoteaty=0Thex-valuesgotclosetobutdidnottouchthelinex=½(averticalline)verticalasymptoteisthelinex=½OccursbecausethedenominatorcannotbezeroThereciprocalofalinearfunctionwillalwayshaveoneverticalasymptoteExample1:NotesAlinethataExample2(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)LabelthehorizontalandverticalasymptotesExample2(a)UseyourTI-83orExample2:SolutionThelinex=1(verticalasymptote)Theliney=0(horizontalasymptote)Example2:SolutionThelinexExample2:NotesInthisexamplethevalueofk(thenumberinfrontofx)isnegative:Asaresult,branchontheleftoftheverticalasymptoteisabovethex-axisandthebranchontherightbranchisbelowitWhenkispositivethebranchontheleftisbelowthex-axisandthebranchontherightbranchisaboveitExample2:NotesInthisexamplExample3Considerthefunction(a)Determinetheequationsoftheasymptotes(b)StatethedomainandrangeExample3ConsiderthefunctionExample3:SolutionThehorizontalasymptoteistheliney=0
See“Example1:Notes” Theverticalasymptoteoccursbecausethedenominatorcannotbezero.WeneedtofindthevalueofxthatmakesthedenominatorzeroTherefore,theverticalasymptoteisthelinex=2Example3:SolutionThehorizonExample3:Solution(b)Thedomaintellsuswhatvaluesofxthefunctioncanbeevaluatedat.Theonlyvalueofxwecan’thaveis2.Therefore, Therangetellsuswhatvaluesofythefunctioncanhave.Theonlyvalueofywewillnevergetis0.Therefore,Example3:Solution(b)ThedomExample3:NotesOurverticalasymptotewasthelinex=2andourdomainwasTheverticalasymptotegivesyouthedomainOurhorizontalasymptotewastheliney=0andourrangewasThehorizontalasymptotegivesyoutherangeExample3:NotesOurverticalaExample4Determinethex-andy-interceptsofExample4Determinethex-andExample4:SolutionThex-interceptisthevalueofxwheny=0:Thereisnovalueofxthatmakesthistrue.Thereisnox-interceptThey-interceptisthevalueofywhenx=0:They-interceptisExample4:SolutionThex-interSummaryThereciprocalofalinearfunctionhastheformTheverticalasymptoteisfoundbysettingthedenominatorequaltozeroandsolvingforxThedenominatorCANNOTbezeroThedomainisallvaluesofxexceptthisoneThehorizontalasymptoteisthex-axis(theliney=0)TherangeisallvaluesofyexceptzeroThesefunctionshavetwobranches–oneontheleftoftheverticalasymptoteandoneontherightk>0:leftbranchisbelowthex-axis,therightisaboveK<0:leftbranchisabovethex-axis,therightisbelowSummaryThereciprocalofalinPracticeProblemsP.153-154#2,3,5,7-9Note:For#7don’tbotherwithasketch.Justcalculatethey-interceptandstatethedomain,rangeandasymptotes.PracticeProblemsP.153-154#2Unit2:RationalFunctions
Lesson1:ReciprocalofaLinearFunctionUnit2:RationalFunctions
LesWhatisaRationalFunction?Anyfunctionoftheform:Wheref(x)andg(x)arepolynomialfunctionsBecausethedenominatorcanneverbezero,rationalfunctionshavepropertiesthatpolynomialfunctionsdonotWhatisaRationalFunction?AnWhatistheReciprocalofaLinearFunction?Wearegoingtostartbylookingatthesimplestrationalfunctions:ThisisthegeneralformforthereciprocalofalinearfunctionReciprocalmeansyouput“oneover”or,moresimply,you“flipit”WhatistheReciprocalofaLiExample1(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)Describetheendbehaviour(c)Whathappenswhenxgetscloseto½?Example1(a)UseyourTI-83orExample1:Solution(a)Example1:Solution(a)Example1:Solution(b)Asxgetslargeinboththepositiveandnegativedirections,thefunctiongetscloseto–butdoesnottouch–they-axis.Therefore,
Asx+∞,y0 Asx–∞,y0Example1:Solution(b)AsxgeExample1:SolutionStartontheleftofthegraphandmovetowardsx=½:they-valuesgetlargeandnegativeStartontherightofthegraphandmovetowardsx=½:they-valuesgetlargeandpositiveDenotedby:x½-,y-∞Denotedby:x½+,y+∞Approachx=½fromtherightApproachx=½fromtheleft(c)ThefunctionnevercrossesthisverticallineExample1:SolutionStartonthExample1:NotesAlinethatafunctiongetsclosetobutdoesnottouchiscalledanasymptoteThey-valuesgotclosetobutdidnottouchthey-axis(ahorizontalline)horizontalasymptoteistheliney=0Thereciprocalofalinearfunctionwillalwayshaveahorizontalasymptoteaty=0Thex-valuesgotclosetobutdidnottouchthelinex=½(averticalline)verticalasymptoteisthelinex=½OccursbecausethedenominatorcannotbezeroThereciprocalofalinearfunctionwillalwayshaveoneverticalasymptoteExample1:NotesAlinethataExample2(a)UseyourTI-83ortheprogram“Graph”tographthefunction(b)LabelthehorizontalandverticalasymptotesExample2(a)UseyourTI-83orExample2:SolutionThelinex=1(verticalasymptote)Theliney=0(horizontalasymptote)Example2:SolutionThelinexExample2:NotesInthisexamplethevalueofk(thenumberinfrontofx)isnegative:Asaresult,branchontheleftoftheverticalasymptoteisabovethex-axisandthebranchontherightbranchisbelowitWhenkispositivethebranchontheleftisbelowthex-axisandthebranchontherightbranchisaboveitExample2:NotesInthisexamplExample3Considerthefunction(a)Determinetheequationsoftheasymptotes(b)StatethedomainandrangeExample3ConsiderthefunctionExample3:SolutionThehorizontalasymptoteistheliney=0
See“Example1:Notes” Theverticalasymptoteoccursbecausethedenominatorcannotbezero.WeneedtofindthevalueofxthatmakesthedenominatorzeroTherefore,theverticalasymptoteisthelinex=2Example3:SolutionThehorizonExample3:Solution(b)Thedomaintellsuswhatvaluesofxthefunctioncanbeevaluatedat.Theonlyvalueofxwecan’thaveis2.Therefore, Therangetellsuswhatvaluesofythefunctioncanhave.Theonlyvalueofywewillnevergetis0.Therefore,Example3:Solution(b)ThedomExample3:NotesOurverticalasymptotewasthelinex=2andourdomainwasTheverticalasymptotegivesyouthedomainOurhorizontalasymptotewastheliney=0andourrangewasThehorizontalasymptotegivesyoutherangeExample3:NotesOurverticalaExample4Determinethex-andy-interceptsofExample4Determinethex-andExample4:SolutionThex-interceptisthe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 以活动文明城市活动方案
- 浙江省嘉兴市南湖区2023-2024学年五年级下学期数学期末检测卷(含答案)
- 泉州市2025届高三毕业班考前模拟练习卷(一)试题解析
- 企业云年会活动方案
- 企业元旦活动方案
- 企业公司辩论赛活动方案
- 企业剪彩活动方案
- 北京市西城区五年级下学期数学期末试卷(含答案)
- 企业围棋活动方案
- 企业对外沟通活动方案
- 脑疝的判断和急救课件
- 国家开放大学2022秋法理学形考1-4参考答案
- 江西检测收费标准
- BVI公司法全文(英文版)
- 移动基站物业协调方案
- 岩土锚杆技术规程课件
- 风寒感冒及风热感冒诊断及合理用药课件
- 第五版PFMEA编制作业指导书
- VDA6.3过程审核检查表(中英文版)
- DBJ∕T 13-261-2017 福建省二次供水不锈钢水池(箱)应用技术规程
- 二手车评估作业表简单实际样本
评论
0/150
提交评论