版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
《高等代数》考研北京大学配套2021考研真题库第一部分 名校考研真题第1章 多项式一、判断题设Q
【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述得P为数域.设是数域P上的多项式如果a是的三阶导数f(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.( )[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).设f(x)=x4+4x-3,则f(x)在有理数域上不可约.( )[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)f2(x)的一个公因式.又因为为次数不超过3的首项系数为1g(x))=x2-1三、证明题设不可约的有理分数p/q是整系数多项式f(x)=a0xn+a1xn-1+…+an-1x+an的根,证明:q∣a0,p∣anp/q是又因为qx-p的公因子],且f(x)=(qx-p)(bn-1xn-1+…+b0,bi∈z比较两边系数,得a0=qbn-1,an=-pb0 q∣a0,p∣an设f(x)和g(x)是数域P为给定的正整数.求证:f(x)∣g(x)的充要条件是fk(x)∣gk(x)[浙江大学研]证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h(x)∈P(x),两边k次方得gk(x)=fk(x)hk(x),所以fk(x)∣gk(x)(2)再证充分性.设fk(x)∣gk(x)(i)若f(x)=g(x)=0,则f(x)∣g(x)(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①所以fk(x)=dk(x)f1k(x),gk(x)=dk(x)g1k(x)因为fk(x)∣gk(x),所以存在h(x)∈P[x](x),使得gk(x)=fk(x)·h(x)所以dk(x)g1k(x)=dk(x)f1k(x)·h(x),两边消去dk(x),得g1k(x)=f1k(x)·h(x)②由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1故fl(x)=c,其中c为非零常数.所以f(x)=d(x)f1(x)=cd(x) f(x)∣g(x)设都是P[x]中的非零多项式,且这里m≥1.又若(s(x),g1(x))=1,s(x)∣f(x).证明:不存在f1(x),r(x)∈P[xr(x)≠0,∂(r(x))<∂(s(x))使①[浙江大学研]证明:用反证法,若存在f1(x),r(x)使①式成立,则用g(x)乘①式两端,得f(x)=r(x)g1(x)+f1(x)s(x)②因为s(x)∣f(x),s(x)∣f1(x)s(x),由②式有s(x)∣r(x)g1(x).但,所以s(x)∣r(x).矛盾.设f(x)是有理数域上n次[n≥2f的一根的倒数也是每一根的倒数也是证明:设b是f(x)的一根,1/b也是f(x)的根.再设c是f(x)的任一根.下证1/c也是f(x)的根.令g(x)=f(x)/d,其中d为f(x)的首项系数,不难证明:g(x)与f(x)有相同的根,其中g(x)是首项系数为l的有理系数不可约多项式.设g(x)=xn+an-1xn-1+…+a1x+a0,(a0≠0).由于bn+an-1bn-1+…+a1b+a0=0①(1/b)n+an-1(1/b)n-1+…+a1(1/b)+a0=0⇒a0bn+a1bn-1+…+an-1b+1=0⇒bn+(a1/a0)bn-1+…+(an-1/a0)b+1/a0=0②由(x不可约及①②两式可得0=0i0-i i=-a0=±1,ai=±an-i(i=1,2,…,n-1)③由③式可知,当时,有,且5.设是复系数一元多项式,对任意整数n有的系数都是有理数.举例说明存在不是整系数的多项式,满足对任意整数n,有f(n)是整数.[浙江大学研]证明:设f(x)=g(x)+ih(x),g(x),h(x)∈R[x]由于∀n∈Z,f(n)=g(n)+ih(n)∈Z,所以h(x)=0.g(x)∈Q[x].事实上,令g(x)=a0+a1x+…+amxm,am≠0,ai∈R,i=1,2,…,m则有a0+a1+…+am=g(1)∈Z,a0+a1·2+…+am·2m=g(2)∈Z,a0+a1(m+1)+…+am(m+1)m=g(m+1)∈Z.记则有(a0,a1,…,am)T=(g(1),g(2),…,g(m+1))①又显见∣T∣=m!(m-1)!…2!1!≠0,由①式得(a0,a1,…,am)=(g(1),g(2),…,g(m+1))T-1这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 施工单位关于施工进度报告的工作联系函
- 跨越障碍培养学生创新能力的有效措施
- 跨领域视角下的安全工作与生产计划整合
- DB3702T 45.1-2024地理标志产品 平度牛肉 第1部分:生产技术规程
- 二手货物买卖合同范文
- 中外合资企业职工住房公积金合同范本
- 中外合作经营企业合同范本
- 中外合资饭店租赁合同模板
- 专利实施许可合同协议
- 中外原材料供应合同样本
- 西安经济技术开发区管委会招聘笔试真题2024
- 六年级2025寒假特色作业
- (八省联考)云南省2025年普通高校招生适应性测试 物理试卷(含答案解析)
- 2025药剂科工作人员工作计划
- 春节节后安全教育培训
- 2025年新高考数学一轮复习第5章重难点突破02向量中的隐圆问题(五大题型)(学生版+解析)
- 水土保持方案投标文件技术部分
- 印刷品质量保证协议书
- 小红书食用农产品承诺书示例
- 2023年浙江省公务员录用考试《行测》题(A类)
- CQI-23模塑系统评估审核表-中英文
评论
0/150
提交评论