2022年天津市大港区第六中学数学九年级第一学期期末经典试题含解析_第1页
2022年天津市大港区第六中学数学九年级第一学期期末经典试题含解析_第2页
2022年天津市大港区第六中学数学九年级第一学期期末经典试题含解析_第3页
2022年天津市大港区第六中学数学九年级第一学期期末经典试题含解析_第4页
2022年天津市大港区第六中学数学九年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列成语所描述的是随机事件的是()A.竹篮打水 B.瓜熟蒂落 C.海枯石烂 D.不期而遇2.下列计算错误的是()A. B. C. D.3.方程的根是()A. B. C. D.4.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.5.从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球()A.10个 B.20个 C.30个 D.无法确定6.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个8.如图为二次函数的图象,在下列说法中:①;②方程的根是,;③④当时,随的增大而减小.不正确的说法有()A.① B.①② C.①③ D.②④9.已知点P在线段AB上,且AP∶PB=2∶3,那么AB∶PB为()A.3∶2 B.3∶5 C.5∶2 D.5∶310.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=38911.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.12.用配方法解方程x2+4x+1=0时,原方程应变形为()A.(x+2)2=3 B.(x﹣2)2=3 C.(x+2)2=5 D.(x﹣2)2=5二、填空题(每题4分,共24分)13.________.14.菱形的两条对角线分别是,,则菱形的边长为________,面积为________.15.两幢大楼的部分截面及相关数据如图,小明在甲楼A处透过窗户E发现乙楼F处出现火灾,此时A,E,F在同一直线上.跑到一楼时,消防员正在进行喷水灭火,水流路线呈抛物线,在1.2m高的D处喷出,水流正好经过E,F.若点B和点E、点C和F的离地高度分别相同,现消防员将水流抛物线向上平移0.4m,再向左后退了____m,恰好把水喷到F处进行灭火.16.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.17.闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_____.18.对于任何实数,,,,我们都规定符号的意义是,按照这个规定请你计算:当时,的值为________.三、解答题(共78分)19.(8分)如图,已知、两点的坐标分别为,,直线与反比例函数的图象相交于点和点.(1)求直线与反比例函数的解析式;(2)求的度数;(3)将绕点顺时针方向旋转角(为锐角),得到,当为多少度时,并求此时线段的长度.20.(8分)如图,∆ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.(1)求证:∆ABM∽∆ECA.(2)当CM=4OM时,求BM的长.(3)当CM=kOM时,设∆ADE的面积为,∆MCD的面积为,求的值(用含k的代数式表示).21.(8分)(1)解方程组:(2)计算22.(10分)一个不透明的口袋里有四个完全相同的小球,把它们分别标号为,,,.随机摸取一个小球然后放回,再随机摸取一个.请用画树状图和列表的方法,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球标号的和等于1.23.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=2,,求OM的长.24.(10分)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请解答以下问题:(1)用表达式表示蝙蝠形风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?25.(12分)解方程:x(x-2)+x-2=1.26.(1)计算(2)解方程.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据事件发生的可能性大小判断.【详解】解:A、竹篮打水,是不可能事件;B、瓜熟蒂落,是必然事件;C、海枯石烂,是不可能事件;D、不期而遇,是随机事件;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A:,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据,进行判断.3、D【分析】根据因式分解法,可得答案.【详解】解:解得:,,故选:.【点睛】本题考查了解一元二次方程,因式分解是解题关键.注意此题中方程两边不能同时除以,因为可能为1.4、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,

由旋转得:BP=B,∠PB=90°,

∴∠PBC+∠CB=90°,

∵四边形ABCD为正方形,

∴BC=BA,∠ABC=90°,

∴∠AB+∠CB=90°,

∴∠PBC=∠AB,在△PBC和△BA中,,

∴△PBC≌△BA,

∴A=PC=1,

在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.5、B【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是,设口袋中大约有x个白球,则,解得x=1.经检验:x=1是原方程的解故选B.6、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.7、C【详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.8、A【分析】根据二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系逐个判断即可.【详解】二次函数的图象的开口向下,与y轴正半轴相交,则①不正确二次函数的对称轴为,与x轴的一个交点为与x轴的另一个交点为方程的根是,则②正确二次函数的图象上,所对应的点位于第一象限,即,则③正确由二次函数的图象可知,当时,随的增大而减小,则④正确综上,不正确的说法只有①故选:A.【点睛】本题考查了二次函数的图象与性质(对称性、增减性)、以及与二次方程的关系,掌握理解并灵活运用函数的性质是解题关键.9、D【分析】根据比例的合比性质直接求解即可.【详解】解:由题意AP∶PB=2∶3,AB∶PB=(AP+PB)∶PB=(2+3)∶3=5∶3;故选择:D.【点睛】本题主要考查比例线段问题,关键是根据比例的合比性质解答.10、B【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.11、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.12、A【分析】先把常数项移到方程右侧,然后配一次项系数一半的平方即可求解.【详解】x2+4x=﹣1,x2+4x+4=3,(x+2)2=3,故选:A.【点睛】本题考查了解一元二次方程-配方法,掌握在二次项系数为1的前提下,配一次项系数一半的平方是关键.二、填空题(每题4分,共24分)13、【分析】先求特殊角的三角函数值再计算即可.【详解】解:原式=×=.

故答案为.【点睛】本题考查的是特殊角的三角函数值,属较简单题目.14、【分析】根据菱形的对角线互相垂直平分求出两对角线的一半,然后利用勾股定理求出菱形的边长,再根据菱形的面积等于对角线乘积的一半求菱形的面积即可.【详解】∵菱形的两条对角线长分别为6cm,8cm,∴对角线的一半分别为3cm,4cm,∴根据勾股定理可得菱形的边长为:=5cm,∴面积S=×6×8=14cm1.故答案为5;14.【点睛】本题考查了菱形的性质及勾股定理的应用,熟记菱形的性质是解决本题的关键.15、【详解】设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入得,20k+21.2=9.2,∴k=-0.6,∴y=-0.6x+21.2.把y=6.2代入得,-0.6x+21.2=6.2,∴x=25,∴F(25,6.2).设抛物线解析式为:y=ax2+bx+1.2,把E(20,9.2),F(25,6.2)代入得,,解之得:,∴y=-0.04x2+1.2x+1.2,设向上平移0.4m,向左后退了hm,恰好把水喷到F处进行灭火由题意得y=-0.04(x+h)2+1.2(x+h)+1.2+0.4,把F(25,6.2)代入得,6.2=-0.04×(25+h)2+1.2(25+h)+1.2+0.4,整理得:h2+20h-10=0,解之得:,(舍去).∴向后退了m故答案是:【点睛】本题考查了二次函数和一次函数的实际应用,设直线AE的解析式为:y=kx+21.2.把E(20,9.2)代入求出直线解析式,从而求出点F的坐标.把E(20,9.2),F(25,6.2)代入y=ax2+bx+1.2求出二次函数解析式.设向左平移了hm,表示出平移后的解析式,把点F的坐标代入可求出k的值.16、【解析】过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.17、【分析】用花生味汤圆的个数除以汤圆总数计算即可.【详解】解:∵一碗汤圆,其中有4个花生味和2个芝麻味,∴从中任意吃一个,恰好吃到花生味汤圆的概率是:.故答案为.【点睛】本题考查了概率公式的应用,如果一个事件共有n种可能,而且每一个事件发生的可能性相同,其中事件A出现m种可能,那么事件A的概率.18、1【分析】先解变形为,再根据,把转化为普通运算,然后把代入计算即可.【详解】∵,∴,∵,∴=(x+1)(x-1)-3x(x-2)=

x2-1-3x2+6x=-2x2+6x-1=-2(x2-3x)-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,三、解答题(共78分)19、(1)直线AB的解析式为,反比例函数的解析式为;(2)∠ACO=30°;(3)当为60°时,OC'⊥AB,AB'=1.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出n的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO-∠COH即可求出∠ACO的度数;(3)过点B1作B′G⊥x轴于点G,先求得∠OCB=30°,进而求得α=∠COC′=60°,根据旋转的性质,得出∠BOB′=α=60°,解直角三角形求得B′的坐标,然后根据勾股定理即可求得AB′的长.【详解】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,1),B(-1,0)代入得:解得,故直线AB解析式为y=x+1,将D(2,n)代入直线AB解析式得:n=2+1=6,则D(2,6),将D坐标代入中,得:m=12,则反比例解析式为;(2)联立两函数解析式得:解得解得:或,则C坐标为(-6,-2),过点C作CH⊥x轴于点H,在Rt△OHC中,CH=,OH=3,∵tan∠COH=,∴∠COH=30°,∵tan∠ABO=,∴∠ABO=60°,∴∠ACO=∠ABO-∠COH=30°;(3)过点B′作B′G⊥x轴于点G,∵OC′⊥AB,∠ACO=30°,∴∠COC′=60°,∴α=60°.∴∠BOB′=60°,∴∠OB′G=30°,∵OB′=OB=1,∴OG=OB′=2,B′G=2,∴B′(-2,2),∴AB′==1.【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定函数解析式,一次函数与x轴的交点,坐标与图形性质,勾股定理,以及锐角三角函数定义,熟练掌握待定系数法是解本题的关键.20、(1)证明见解析;(2);(3)【分析】(1)利用同弧所对的圆周角相等,以及平行线的性质得出角相等,再利用两角对应相等的两个三角形相似解题.(2)连接BC构造直角三角形,再过B作BF⊥AC,利用所得到的直角三角形,结合勾股定理解题.(3)过点M作出△MCD的高MG,再由,得出线段间的比例关系,从而可得出结果.【详解】解:(1)∵弧CD=弧CD,∴.∵,∴.∴∵弧AD=弧AD∴∴(2)连接BC,作,∵半径为5,∴.∵,∴,.∴.由图可知AC为直径,,得.,解得.在中,,则.∴.在中,.(3)当,即,,,∵,∴,∴.过M作,,(以AC为直径),可知,∴.【点睛】此题是圆中的相似问题,一般利用两角相等证明相似,同时注意结合圆中作辅助线的技巧,构造直角三角形是解题的关键.21、(1);(2)【分析】(1)利用加减消元法进行求解即可;(2)根据分式混合运算的法则及运算顺序进行计算即可.【详解】解:(1),①×2得:③,②-③得:,解得:,将代入①得:,原方程组的解为;(2)原式.【点睛】本题考查了二元一次方程组的求解及分式的混合运算,熟练掌握运算法则是解题的关键.22、(1);(2);【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占1种,然后根据概率的概念计算即可;

(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于1的有3种,进而可求出其概率.【详解】画树状图如图(1)∵共有种等可能的结果,两次取出的小球标号相同的共种情况,∴两次取出的小球标号相同的概率为.(2)两次取出的小球标号的和等于的情况共有种,两次取出的小球标号的和等于的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)证明见解析;(2)【分析】(1)连接OE,如图,通过证明∠GEA+∠OEA=90°得到OE⊥GE,然后根据切线的判定定理得到EG是⊙O的切线;(2)连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,利用勾股定理得到,解得r=3,然后证明Rt△OEM∽Rt△CHA,再利用相似比计算OM的长.【详解】(1)证明:连接OE,如图,

∵GE=GF,∴∠GEF=∠GFE,而∠GFE=∠AFH,∴∠GEF=∠AFH,∵AB⊥CD,∴∠OAF+∠AFH=90°,∴∠GEA+∠OAF=90°,∵OA=OE,∴∠OEA=∠OAF,∴∠GEA+∠OEA=90°,即∠GEO=90°,∴OE⊥GE,∴EG是⊙O的切线;(2)解:连接OC,如图,设⊙O的半径为r,则OC=r,OH=r-2,在Rt△OCH中,,解得r=3,在Rt△ACH中,AC=,∵AC∥GE,∴∠M=∠CAH,∴Rt△OEM∽Rt△CHA,∴,即,解得:OM=.【点睛】本题考查了切线的判断与性质:圆的切线垂直于经过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论