




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知垂直于的平分线于点,交于点,,若的面积为1,则的面积是()A. B. C. D.2.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等3.如图所示的图形,是下面哪个正方体的展开图()A. B. C. D.4.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)5.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S1.若S2=48,S1=9,则S1的值为()A.18 B.12 C.9 D.16.若a+|a|=0,则等于()A.2﹣2a B.2a﹣2 C.﹣2 D.27.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣58.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A.5:2 B.4:3 C.2:1 D.3:29.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A.cm B.2cm C.2cm D.cm10.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是().A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为__________.12.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.13.如图,已知AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠1=50°,则∠2的度数为_______.14.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为x,则x=__________.15.观察以下一列数:3,,,,,…则第20个数是_____.16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.17.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.三、解答题(共7小题,满分69分)18.(10分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在________等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.19.(5分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.20.(8分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.21.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:A.二维码过闸B.现金购票C.市名卡过闸D.银联闪付某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).22.(10分)解不等式组:23.(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.24.(14分)小明、小刚和小红打算各自随机选择本周日的上午或下午去扬州马可波罗花世界游玩.小明和小刚都在本周日上午去游玩的概率为________;求他们三人在同一个半天去游玩的概率.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
先证明△ABD≌△EBD,从而可得AD=DE,然后先求得△AEC的面积,继而可得到△CDE的面积.【详解】∵BD平分∠ABC,∴∠ABD=∠EBD,∵AE⊥BD,∴∠ADB=∠EDB=90°,又∵BD=BD,∴△ABD≌△EBD,∴AD=ED,∵,的面积为1,∴S△AEC=S△ABC=,又∵AD=ED,∴S△CDE=S△AEC=,故选B.【点睛】本题考查了全等三角形的判定,掌握等高的两个三角形的面积之比等于底边长度之比是解题的关键.2、D【解析】
解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.3、D【解析】
根据展开图中四个面上的图案结合各选项能够看见的面上的图案进行分析判断即可.【详解】A.因为A选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是A:B.因为B选项中的几何体展开后,阴影正方形的顶点不在阴影三角形的边上,与展开图不一致,故不可能是B;C.因为C选项中的几何体能够看见的三个面上都没有阴影图家,而展开图中有四个面上有阴影图室,所以不可能是C.D.因为D选项中的几何体展开后有可能得到如图所示的展开图,所以可能是D;故选D.【点睛】本题考查了学生的空间想象能力,解决本题的关键突破口是掌握正方体的展开图特征.4、B【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:∴棋子“炮”的坐标为(2,1),故答案为:B.【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.5、D【解析】
过A作AH∥CD交BC于H,根据题意得到∠BAE=90°,根据勾股定理计算即可.【详解】∵S2=48,∴BC=4,过A作AH∥CD交BC于H,则∠AHB=∠DCB.∵AD∥BC,∴四边形AHCD是平行四边形,∴CH=BH=AD=2,AH=CD=1.∵∠ABC+∠DCB=90°,∴∠AHB+∠ABC=90°,∴∠BAH=90°,∴AB2=BH2﹣AH2=1,∴S1=1.故选D.【点睛】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.6、A【解析】
直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.7、B【解析】
根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.【详解】∵关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,
∴-2+m=−,
解得,m=-1,
故选B.8、D【解析】
依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.【详解】∵l1∥l2,∴,设AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故选D.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.9、B【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.10、D【解析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:∵,..又∵过点,交于点,∴,∴,∴.故选D.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
设扇形的圆心角为n°,则根据扇形的弧长公式有:,解得所以12、y2<y1<y2【解析】分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.详解:设t=k2﹣2k+2,∵k2﹣2k+2=(k﹣1)2+2>1,∴t>1.∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,∴y1=﹣,y2=﹣t,y2=t,又∵﹣t<﹣<t,∴y2<y1<y2.故答案为:y2<y1<y2.点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.13、65°【解析】因为AB∥CD,所以∠BEF=180°-∠1=130°,因为EG平分∠BEF,所以∠BEG=65°,因为AB∥CD,所以∠2=∠BEG=65°.14、20%.【解析】试题分析:根据原价为100元,连续两次涨价x后,现价为144元,根据增长率的求解方法,列方程求x.试题解析:依题意,有:100(1+x)2=144,1+x=±1.2,解得:x=20%或-2.2(舍去).考点:一元二次方程的应用.15、【解析】
观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n个数为,则第20个数是.故答案为.【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.16、1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm,由题意得,,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.17、1【解析】
根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴,,设CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案为1.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.三、解答题(共7小题,满分69分)18、(1)C;(2)100【解析】
(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400=100(人)答:估计该校九年级男生跳绳成绩是等级的人数有100人.【点睛】本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.19、(1)1;(1)≤m<.【解析】
(1)在Rt△ABP中利用勾股定理即可解决问题;(1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.【详解】解:(1):(1)如图1中,设PD=t.则PA=5-t.
∵P、B、E共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍弃),∴t=1时,B、E、P共线.(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3易证四边形EMCQ是矩形,∴CM=EQ=1,∠M=90°,∴EM=,∵∠DAC=∠EDM,∠ADC=∠M,∴△ADC∽△DME,∴∴∴AD=,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3在Rt△ECQ中,QC=DM=,由△DME∽△CDA,∴∴,∴AD=,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.【点睛】本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.20、证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质21、(1)600人(2)【解析】
(1)计算方式A的扇形圆心角占D的圆心角的分率,然后用方式D的人数乘这个分数即为方式A的人数;(2)列出表格或树状图分别求出所有情况以及两名同学恰好选中同一种购票方式的情况后,利用概率公式即可求出两名同学恰好选中同一种购票方式的概率.【详解】(1)(人),∴最喜欢方式A的有600人(2)列表法:ABCAA,AA,BA,CBB,AB,BB,CCC,AC,BC,C树状法:∴(同一种购票方式)【点睛】本题考查扇形统计图的运用和列表法或画树状图求概率的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.22、﹣9<x<1.【解析】
先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2022中考小说阅读教师用
- 文化科技融合趋势报告:增强现实技术在教育领域的创新应用案例
- 二零二五年度环保设备与技术改造推广合同
- 2025版消防给排水系统设计与施工安装合同
- 2025版公共安全技术服务合同评估与应急响应
- 2025版绿色建筑一体化总承包合同书
- 二零二五版党组织联建共建企业党建工作合作协议
- 2025版长租公寓租赁及装修合同范本
- 2025电商代发货及电子发票服务合作协议
- 2025版个人租赁协议(67478号)专业版
- 防范养老诈骗管理制度
- 2024年法律职业资格(主观题)考试真题解析
- DB33∕T 1154-2018 建筑信息模型(BIM)应用统一标准
- 初二物理自学指导计划
- 吊装行车安全培训
- 照明设计师试题及答案
- 麻疹防控知识培训课件
- 《测序仪基础维护与故障排查》课件
- 太极养生文化传播中心行业跨境出海战略研究报告
- 云南七年级下学期期末考试英语试题含答案5篇
- 竞争性谈判业务培训
评论
0/150
提交评论