版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PancakesWithAProblem!GreatTheoreticalIdeasInComputerScienceAnupamGuptaCS15-251Fall2O05Lecture1Aug29th,2OO5CarnegieMellonUniversityPancakesWithAProblem!GreatCourseStaffProfs: AnupamGupta JohnLaffertyTAs: KanatTangwongsan YinmengZhang /~15251Pleasecheckthewebpagesregularly!CourseStaffPleasefeelfreetoaskquestions!
((()))Pleasefeelfree((()))CourseDocument
Youmustreadthiscarefully.Gradingformulaforthecourse.40%homework
5%in-classquizzes25%in-recitationtests30%finalSevenpointsadaylatepenalty.Collaboration/CheatingPolicyYoumayNOTsharewrittenwork.Wereusehomeworkproblems.CourseDocument
YoumustreadPancakesWithAProblem!GreatTheoreticalIdeasInComputerScienceAnupamGuptaCS15-251Fall2O05Lecture1Aug29th,2OO5CarnegieMellonUniversityPancakesWithAProblem!GreatThechefatourplaceissloppy,andwhenhepreparesastackofpancakestheycomeoutalldifferentsizes.Therefore,whenIdeliverthemtoacustomer,onthewaytothetableIrearrangethem(sothatthesmallestwindsupontop,andsoon,downtothelargestatthebottom)
Idothisbygrabbingseveralfromthetopandflippingthemover,repeatingthis(varyingthenumberIflip)asmanytimesasnecessary.ThechefatourplaceissloppDevelopingANotation:
TurningpancakesintonumbersDevelopingANotation:
TurningDevelopingANotation:
TurningpancakesintonumbersDevelopingANotation:
TurningDevelopingANotation:
Turningpancakesintonumbers23451DevelopingANotation:
TurningDevelopingANotation:
Turningpancakesintonumbers52341DevelopingANotation:
TurningHowdowesortthisstack?
Howmanyflipsdoweneed?5
2
3
4
1Howdowesortthisstack?
How4FlipsAreSufficient12345523414321523415143254FlipsAreSufficient12345523AlgebraicRepresentation52341X=Thesmallestnumber
offlipsrequiredtosort:?X?UpperBoundLowerBoundAlgebraicRepresentation52341XAlgebraicRepresentation52341X=Thesmallestnumber
offlipsrequiredtosort:?X4UpperBoundLowerBoundAlgebraicRepresentation52341X4Flipsarenecessaryinthiscase523414132514325Flip1hastoput5onbottomFlip2mustbring4totop.4FlipsarenecessaryinthisUpperBoundLowerBound4X4X=4UpperBoundLowerBound45thPancakeNumberThenumberofflipsrequiredtosorttheworstcasestackof5pancakes.?P5
?UpperBoundLowerBoundP5=5thPancakeNumberThenumbero5thPancakeNumberThenumberofflipsrequiredtosorttheworstcasestackof5pancakes.4P5
?UpperBoundLowerBoundP5=5thPancakeNumberThenumbero..........The5thPancakeNumber:
TheMAXoftheX’s120119932X1X2X3X119X120523414..........The5thPanThe5thPancakeNumber:
TheMAXoftheX’s1201993..........X1X2X3X119X1205234141234554321The5thPancakeNumber:
TheM1201993..........X1X2X3X119X1205234141234554321P5=
MAXovers2stacksof5
ofMIN#offlipstosorts
1201993..........X1X2Pn=
MAXovers2stacksofnpancakes
ofMIN#offlipstosorts
Pn=
Thenumberofflipsrequiredtosorttheworst-casestackofnpancakes.Pn=
MAXovers2stacksofnPn=
MAXovers2stacksofnpancakes
ofMIN#offlipstosorts
Pn=
Thenumberofflipsrequiredtosortaworst-casestackofnpancakes.Pn=
MAXovers2stacksofnBeCool.LearnMath-speak.Pn=
Thenumberofflipsrequiredtosorta
worst-casestackofnpancakes.Pn=
ThenumberofflipsrequWhatisPnforsmalln?Canyoudon=0,1,2,3?WhatisPnforsmalln?CanyouInitialValuesOfPnn0123Pn0013InitialValuesOfPnn0123Pn001P3=31
3
2requires3Flips,henceP3≥3.ANYstackof3canbedonebygettingthebigonetothebottom(≤2flips),andthenusing≤1extrafliptohandlethetoptwo.Hence,P3=3.P3=31
3
2requires3nthPancakeNumberThenumberofflipsrequiredtosortaworstcasestackofnpancakes.?Pn
?UpperBoundLowerBoundPn=nthPancakeNumberThenumberoBracketing:
WhatarethebestlowerandupperboundsthatIcanprove?≤f(x)≤[]Bracketing:
Whatarethebest?Pn
?TakeafewminutestotryandproveupperandlowerboundsonPn,
forn>3.?Pn?TakeafewminutestBringbiggesttotop.
Placeitonbottom.Bringnextlargesttotop.
Placesecondfrombottom.Andsoon…Bring-to-topMethodBringbiggesttotop.
PlaceiUpperBoundOnPn:
BringToTopMethodFornPancakesIfn=1,noworkrequired-wearedone!Otherwise,flippancakentotopand
thenflipittopositionn.Nowuse:BringToTopMethod
Forn-1PancakesTotalCost:atmost2(n-1)=2n–2flips.UpperBoundOnPn:
BringToToBetterUpperBoundOnPn:
BringToTopMethodFornPancakesIfn=2,atmostoneflipandwearedone.Otherwise,flippancakentotopand
thenflipittopositionn.Nowuse:BringToTopMethod
Forn-1PancakesTotalCost:atmost2(n-2)+1=2n–3flips.BetterUpperBoundOnPn:
BrinBringtotopnotalwaysoptimalforaparticularstackBring-to–toptakes5flips,butwecandoin4flips3214552341231454132514325Bringtotopnotalwaysoptima?Pn
2n-3WhatotherboundscanyouproveonPn??Pn2n-3Whatotherbounds9
16SupposeastackScontainsapairofadjacentpancakesthatwillnotbeadjacentinthesortedstack.AnysequenceofflipsthatsortsstackSmustinvolveoneflipthatinsertsthespatulabetweenthatpairandbreaksthemapart.BreakingApartArgument9BreakingApartArgument9
16SupposeastackScontainsapairofadjacentpancakesthatwillnotbeadjacentinthesortedstack.AnysequenceofflipsthatsortsstackSmustinvolveoneflipthatinsertsthespatulabetweenthatpairandbreaksthemapart.Furthermore,thissameprincipleistrueofthe“pair”formedbythebottompancakeofSandtheplate.BreakingApartArgument9BreakingApartArgumentnPn2
4
6
8
.
.
n
1
3
5
7
.
.
n-1SSupposeniseven.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.nPn2
4
6
8
.
.
n
1
3
5
7
.
nPnSupposeniseven.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.2
1
SDetail:Thisconstructiononlyworkswhenn>2nPnSupposeniseven.
SconPnSupposenisodd.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.1
3
5
7
.
.
n2
4
6
8
.
.
n-1
SnPnSupposenisodd.
SconnPn1
3
2
SDetail:Thisconstructiononlyworkswhenn>3Supposenisodd.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.nPnSDetail:ThisconstructinPn
2n–3forn≥3BringToTopiswithinafactoroftwoofoptimal!nPn2n–3forn≥3BrinStartingfromANYstackwecangettothesortedstackusingnomorethanPnflips.nPn
2n–3forn≥3StartingfromANYstackwecanFromANYstacktosortedstackin≤Pn.Reversethesequencesweusetosort.FromsortedstacktoANYstackin≤Pn?
((()))FromANYstacktosortedstackHence,
FromANYstacktoANYstackin≤2Pn.
FromANYstacktosortedstackin≤Pn.FromsortedstacktoANYstackin≤Pn?
Hence,
FromANYstacktoANYFromANYstacktoANYstackin≤2Pn.
Canyoufindafasterwaythan2PnflipstogofromANYtoANY?
((()))FromANYstacktoANYstackinFromANYStackStoANYstackTin≤PnRenamethepancakesinStobe1,2,3,..,n.RewriteTusingthenewnamingschemethatyouusedforS.
Twillbesomelist:p(1),p(2),..,p(n).
Thesequenceofflipsthatbringsthesortedstacktop(1),p(2),..,p(n)willbringStoT.S:
4,3,5,1,2T:
5,2,4,3,11,2,3,4,53,5,1,2,4FromANYStackStoANYstackTheKnownPancakeNumbers1
2
3
4
5
6
7
8
9
10
11
12
130
1
3
4
5
nPn7
8
9
10
11
13
14
15TheKnownPancakeNumbers1
2
3P14IsUnknown14!Orderingsof14pancakes.14!=87,178,291,200P14IsUnknown14!OrderingsofIsThisReallyComputerScience?IsThisReallyComputerSciencPosedinAmer.Math.Monthly82(1)(1975),“HarryDweighter”a.k.a.JacobGoodmanPosedinAmer.Math.Monthly8(17/16)nPn
(5n+5)/3WilliamGates&ChristosPapadimitriouBoundsForSortingByPrefixReversal.DiscreteMathematics,vol27,pp47-57,1979.(17/16)nPn(5n+5)/3Willia(15/14)nPn
(5n+5)/3H.Heydari&
H.I.SudboroughOntheDiameterofthePancakeNetwork.JournalofAlgorithms,vol25,pp67-94,1997.(15/14)nPn(5n+5)/3H.HeyPermutationAnyparticularorderingofallnelementsofannelementsetS,iscalledapermutationonthesetS.Example:S={1,2,3,4,5}Onepossiblepermutation:532415*4*3*2*1=120possiblepermutationsonSPermutationAnyparticularordePermutationAnyparticularorderingofallnelementsofannelementsetS,iscalledapermutationonthesetS.Eachdifferentstackofnpancakesisoneofthepermutationson[1..n].PermutationAnyparticularordeRepresentingAPermutationWehavemanywaystospecifyapermutationonS.
Herearetwomethods:Welistasequenceofalltheelementsof[1..n],eachonewrittenexactlyonce.
Ex:645213WegiveafunctiononSsuchthat
(1)(2)(3)..(n)isasequencethat
lists[1..n],eachoneexactlyonce.
Ex:(1)=6(2)=4(3)=5(4)=2(4)=1(6)=3RepresentingAPermutationWehAPermutationisaNOUNAnorderingSofastackofpancakesisapermutation.APermutationisaNOUNAnordeAPermutationisaNOUN.
ApermutationcanalsobeaVERB.AnorderingSofastackofpancakesisapermutation.WecanpermuteStoobtainanewstackS’.Permutealsomeanstorearrangesoastoobtainapermutationoftheoriginal.APermutationisaNOUN.
AperPermuteAPermutation.IstartwithapermutationSofpancakes.
Icontinuetouseaflipoperationtopermutemycurrentpermutation,soastoobtainthesortedpermutation.PermuteAPermutation.IstartTherearen!=1*2*3*4*…*npermutationsonnelements.Easyproofinthefirstcountinglecture.Therearen!=1*2*3*4*…*nperPancakeNetwork:
DefinitionForn!NodesForeachnode,assignitthenameofoneofthen!stacksofnpancakes.Putawirebetweentwonodesiftheyareoneflipapart.PancakeNetwork:
DefinitionFoNetworkForn=3123321213312231132NetworkForn=3123321213312231NetworkForn=4NetworkForn=4PancakeNetwork:
MessageRoutingDelayWhatisthemaximumdistancebetweentwonodesinthenetwork?PnPancakeNetwork:
MessageRoutiPancakeNetwork:
ReliabilityIfupton-2nodesgethitbylightningthenetworkremainsconnected,eventhougheachnodeisconnectedtoonlyn-1othernodes.ThePancakeNetworkisoptimallyreliableforitsnumberofedgesandnodes.PancakeNetwork:
ReliabilityIfMutationDistanceMutationDistanceHighLevelPointComputerScienceisnotmerelyaboutcomputersandprogramming,itisaboutmathematicallymodelingourworld,andaboutfindingbetterandbetterwaystosolveproblems.Thislectureisamicrocosmofthisexercise.HighLevelPointOne“Simple”ProblemAhostofproblemsandapplicationsatthefrontiersofscienceOne“Simple”ProblemAhostofStudyBeePleasereadthe
coursedocumentcarefully.Youmusthandina
signedcheating
policypage.StudyBeeStudyBeeDefinitionsof: nthpancakenumber lowerbound upperbound permutationProofof: ANYtoANYin≤PnImportantTechnique: BracketingStudyBeeReferencesBillGates&ChristosPapadimitriou:BoundsForSortingByPrefixReversal.DiscreteMathematics,vol27,pp47-57,1979.H.Heydari&H.I.Sudborough:OntheDiameterofhePancakeNetwork.JournalofAlgorithms,vol25,pp67-94,1997ReferencesPancakesWithAProblem!GreatTheoreticalIdeasInComputerScienceAnupamGuptaCS15-251Fall2O05Lecture1Aug29th,2OO5CarnegieMellonUniversityPancakesWithAProblem!GreatCourseStaffProfs: AnupamGupta JohnLaffertyTAs: KanatTangwongsan YinmengZhang /~15251Pleasecheckthewebpagesregularly!CourseStaffPleasefeelfreetoaskquestions!
((()))Pleasefeelfree((()))CourseDocument
Youmustreadthiscarefully.Gradingformulaforthecourse.40%homework
5%in-classquizzes25%in-recitationtests30%finalSevenpointsadaylatepenalty.Collaboration/CheatingPolicyYoumayNOTsharewrittenwork.Wereusehomeworkproblems.CourseDocument
YoumustreadPancakesWithAProblem!GreatTheoreticalIdeasInComputerScienceAnupamGuptaCS15-251Fall2O05Lecture1Aug29th,2OO5CarnegieMellonUniversityPancakesWithAProblem!GreatThechefatourplaceissloppy,andwhenhepreparesastackofpancakestheycomeoutalldifferentsizes.Therefore,whenIdeliverthemtoacustomer,onthewaytothetableIrearrangethem(sothatthesmallestwindsupontop,andsoon,downtothelargestatthebottom)
Idothisbygrabbingseveralfromthetopandflippingthemover,repeatingthis(varyingthenumberIflip)asmanytimesasnecessary.ThechefatourplaceissloppDevelopingANotation:
TurningpancakesintonumbersDevelopingANotation:
TurningDevelopingANotation:
TurningpancakesintonumbersDevelopingANotation:
TurningDevelopingANotation:
Turningpancakesintonumbers23451DevelopingANotation:
TurningDevelopingANotation:
Turningpancakesintonumbers52341DevelopingANotation:
TurningHowdowesortthisstack?
Howmanyflipsdoweneed?5
2
3
4
1Howdowesortthisstack?
How4FlipsAreSufficient12345523414321523415143254FlipsAreSufficient12345523AlgebraicRepresentation52341X=Thesmallestnumber
offlipsrequiredtosort:?X?UpperBoundLowerBoundAlgebraicRepresentation52341XAlgebraicRepresentation52341X=Thesmallestnumber
offlipsrequiredtosort:?X4UpperBoundLowerBoundAlgebraicRepresentation52341X4Flipsarenecessaryinthiscase523414132514325Flip1hastoput5onbottomFlip2mustbring4totop.4FlipsarenecessaryinthisUpperBoundLowerBound4X4X=4UpperBoundLowerBound45thPancakeNumberThenumberofflipsrequiredtosorttheworstcasestackof5pancakes.?P5
?UpperBoundLowerBoundP5=5thPancakeNumberThenumbero5thPancakeNumberThenumberofflipsrequiredtosorttheworstcasestackof5pancakes.4P5
?UpperBoundLowerBoundP5=5thPancakeNumberThenumbero..........The5thPancakeNumber:
TheMAXoftheX’s120119932X1X2X3X119X120523414..........The5thPanThe5thPancakeNumber:
TheMAXoftheX’s1201993..........X1X2X3X119X1205234141234554321The5thPancakeNumber:
TheM1201993..........X1X2X3X119X1205234141234554321P5=
MAXovers2stacksof5
ofMIN#offlipstosorts
1201993..........X1X2Pn=
MAXovers2stacksofnpancakes
ofMIN#offlipstosorts
Pn=
Thenumberofflipsrequiredtosorttheworst-casestackofnpancakes.Pn=
MAXovers2stacksofnPn=
MAXovers2stacksofnpancakes
ofMIN#offlipstosorts
Pn=
Thenumberofflipsrequiredtosortaworst-casestackofnpancakes.Pn=
MAXovers2stacksofnBeCool.LearnMath-speak.Pn=
Thenumberofflipsrequiredtosorta
worst-casestackofnpancakes.Pn=
ThenumberofflipsrequWhatisPnforsmalln?Canyoudon=0,1,2,3?WhatisPnforsmalln?CanyouInitialValuesOfPnn0123Pn0013InitialValuesOfPnn0123Pn001P3=31
3
2requires3Flips,henceP3≥3.ANYstackof3canbedonebygettingthebigonetothebottom(≤2flips),andthenusing≤1extrafliptohandlethetoptwo.Hence,P3=3.P3=31
3
2requires3nthPancakeNumberThenumberofflipsrequiredtosortaworstcasestackofnpancakes.?Pn
?UpperBoundLowerBoundPn=nthPancakeNumberThenumberoBracketing:
WhatarethebestlowerandupperboundsthatIcanprove?≤f(x)≤[]Bracketing:
Whatarethebest?Pn
?TakeafewminutestotryandproveupperandlowerboundsonPn,
forn>3.?Pn?TakeafewminutestBringbiggesttotop.
Placeitonbottom.Bringnextlargesttotop.
Placesecondfrombottom.Andsoon…Bring-to-topMethodBringbiggesttotop.
PlaceiUpperBoundOnPn:
BringToTopMethodFornPancakesIfn=1,noworkrequired-wearedone!Otherwise,flippancakentotopand
thenflipittopositionn.Nowuse:BringToTopMethod
Forn-1PancakesTotalCost:atmost2(n-1)=2n–2flips.UpperBoundOnPn:
BringToToBetterUpperBoundOnPn:
BringToTopMethodFornPancakesIfn=2,atmostoneflipandwearedone.Otherwise,flippancakentotopand
thenflipittopositionn.Nowuse:BringToTopMethod
Forn-1PancakesTotalCost:atmost2(n-2)+1=2n–3flips.BetterUpperBoundOnPn:
BrinBringtotopnotalwaysoptimalforaparticularstackBring-to–toptakes5flips,butwecandoin4flips3214552341231454132514325Bringtotopnotalwaysoptima?Pn
2n-3WhatotherboundscanyouproveonPn??Pn2n-3Whatotherbounds9
16SupposeastackScontainsapairofadjacentpancakesthatwillnotbeadjacentinthesortedstack.AnysequenceofflipsthatsortsstackSmustinvolveoneflipthatinsertsthespatulabetweenthatpairandbreaksthemapart.BreakingApartArgument9BreakingApartArgument9
16SupposeastackScontainsapairofadjacentpancakesthatwillnotbeadjacentinthesortedstack.AnysequenceofflipsthatsortsstackSmustinvolveoneflipthatinsertsthespatulabetweenthatpairandbreaksthemapart.Furthermore,thissameprincipleistrueofthe“pair”formedbythebottompancakeofSandtheplate.BreakingApartArgument9BreakingApartArgumentnPn2
4
6
8
.
.
n
1
3
5
7
.
.
n-1SSupposeniseven.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.nPn2
4
6
8
.
.
n
1
3
5
7
.
nPnSupposeniseven.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.2
1
SDetail:Thisconstructiononlyworkswhenn>2nPnSupposeniseven.
SconPnSupposenisodd.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.1
3
5
7
.
.
n2
4
6
8
.
.
n-1
SnPnSupposenisodd.
SconnPn1
3
2
SDetail:Thisconstructiononlyworkswhenn>3Supposenisodd.
ScontainsnpairsthatwillneedtobebrokenapartduringanysequencethatsortsstackS.nPnSDetail:ThisconstructinPn
2n–3forn≥3BringToTopiswithinafactoroftwoofoptimal!nPn2n–3forn≥3BrinStartingfromANYstackwecangettothesortedstackusingnomorethanPnflips.nPn
2n–3forn≥3StartingfromANYstackwecanFromANYstacktosortedstackin≤Pn.Reversethesequencesweusetosort.FromsortedstacktoANYstackin≤Pn?
((()))FromANYstacktosortedstackHence,
FromANYstacktoANYstackin≤2Pn.
FromANYstacktosortedstackin≤Pn.FromsortedstacktoANYstackin≤Pn?
Hence,
FromANYstacktoANYFromANYstacktoANYstackin≤2Pn.
Canyoufindafasterwaythan2PnflipstogofromANYtoANY?
((()))FromANYstacktoANYstackinFromANYStackStoANYstackTin≤PnRenamethepancakesinStobe1,2,3,..,n.RewriteTusingthenewnamingschemethatyouusedforS.
Twillbesomelist:p(1),p(2),..,p(n).
Thesequenceofflipsthatbringsthesortedstacktop(1),p(2),..,p(n)willbringStoT.S:
4,3,5,1,2T:
5,2,4,3,11,2,3,4,53,5,1,2,4FromANYStackStoANYstackTheKnownPancakeNumbers1
2
3
4
5
6
7
8
9
10
11
12
130
1
3
4
5
nPn7
8
9
10
11
13
14
15TheKnownPancakeNumbers1
2
3P14IsUnknown14!Orderingsof14pancakes.14!=87,178,291,200P14IsUnknown14!OrderingsofIsThisReallyComputerScience?IsThisReallyComputerSciencPosedinAmer.Math.Monthly82(1)(1975),“HarryDweighter”a.k.a.JacobGoodmanPosedinAmer.Math.Monthly8(17/16)nPn
(5n+5)/3WilliamGates&ChristosPapadimitriouBoundsForSortingByPrefixReversal.DiscreteMathematics,vol27,pp47-57,1979.(17/16)nPn(5n+5)/3Willia(15/14)nPn
(5n+5)/3H.Heydari&
H.I.SudboroughOntheDiameterofthePancakeNetwork.JournalofAlgorithms,vol25,pp67-94,1997.(15/14)nPn(5n+5)/3H.HeyPermutationAnyparticularorderingofallnelementsofannelementsetS,iscalledapermutationonthesetS.Example:S={1,2,3,4,5}Onepossiblepermutation:532415*4*3*2*1=120possiblepermutationsonSPermutationAnyparticularordePermutationAnyparticularorderingofallnelementsofannelementsetS,iscalledapermutationonthesetS.Eachdifferentstackofnpancakesisoneofthepermutationson[1..n].PermutationAnyparticularordeRepresentingAPermutationWehavemanywaystospecifyapermutationonS.
Herearetwomethods:Welistasequenceofalltheelementsof[1..n],eachonewrittenexactlyonce.
Ex:645213WegiveafunctiononSsuchthat
(1)(2)(3)..(n)isasequencethat
lists[1..n],eachoneexactlyonce.
Ex:(1)=6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 腊味调研报告范文大全
- 无锡酒店调研报告范文
- 课题申报书:共同富裕目标下中国革命老区农户生计脆弱性及转型路径
- 课题申报书:高质量充分就业下大学生就业能岗匹配评价与提升路径研究
- 课题申报书:高校学生教育管理法治化的问题与对策研究
- 上海南湖职业技术学院《新媒体与体育》2023-2024学年第一学期期末试卷
- 12 总也倒不了的老屋 公开课一等奖创新教案
- 上海南湖职业技术学院《计算机制图》2023-2024学年第一学期期末试卷
- 上海民远职业技术学院《生物地理学实验》2023-2024学年第一学期期末试卷
- 上海南湖职业技术学院《网络广告》2023-2024学年第一学期期末试卷
- 田径活动记录第一学期记录
- 采购部年终总结计划PPT模板
- 智能交互式无纸化会议系统设计方案
- 机械制造工艺学课程设计
- 配电箱安装施工方案
- 湘少版英语四年级上册Unit12Petercanjumphigh单元测试题(含答案及)
- 早产儿知情同意书
- 手术质量与安全监测分析制度
- 2020年事业单位招聘考试《气象专业基础知识》真题库及答案1000题
- 模型构建的原则和主要步骤
- 建筑装饰施工组织与管理教学大纲
评论
0/150
提交评论