临床医学1新药研究概论课件_第1页
临床医学1新药研究概论课件_第2页
临床医学1新药研究概论课件_第3页
临床医学1新药研究概论课件_第4页
临床医学1新药研究概论课件_第5页
已阅读5页,还剩141页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新药研究概论引言Introduction先导化合物的产生Leaddiscovery先导化合物的优化Leadoptimization新药研究概论引言1Introduction

新药研发R&DofNewDrugs

新药新药研发过程新药研发涉及学科新药研发特点

药物分子设计MolecularDrugDesign

概念及内容

先导化合物LeadCompoundIntroduction新药研发R&DofNe2NewDrugs

新药系指我国未生产过的药品。按审批管理的要求,新药分为中药、化学药品和生物药品(新药审批办法)新化学实体NCEnewchemicalentities

首次成为药品的新化学结构NewDrugs新药系指我国未生产过的药品。按审批管理的3新药研发过程1、制定研究计划,设计实验方案并实施之,获得潜在NCE2、临床前研究,获得IND(investigationalnewdrug)西药临床前22项(新药证书,25项)中药临床前19项(新药证书,22项)新药研发过程1、制定研究计划,设计实验方案并实施之,获得潜4新药研发过程3、临床试验(或临床验证),获得NDA(newdrugapproval)PhaseI:20-30例健康受试者PhaseII:不少于100例典型患者PhaseIII:不少于300例患者4、上市后研究,临床药理一类试生产期,PhaseIV:>2000例新药研发过程3、临床试验(或临床验证),获得NDA(new5新药研发是一项系统工程,涉及多个学科分子生物学分子药理学生物信息学药物化学计算机科学药物分析化学药理学毒理学药剂学制药工艺学新药研发是一项系统工程,涉及多个学科分子生物学6新药研发特点投资高周期长风险高利润高竞争激烈新药研发特点投资高7Introduction

新药研发R&DofNewDrugs新药新药研发过程新药研发涉及学科新药研发特点药物分子设计MolecularDrugDesign概念及内容先导化合物LeadCompoundIntroduction新药研发R&DofNe8药物作用的三个重要相给药剂量剂型崩解药物溶出可被吸收的药物药物利用度吸收、分布、代谢、排泄可产生作用的药物生物利用度药物与靶点相互作用效应药剂相药代动力相药效相药物作用的三个重要相给药剂量剂型崩解药物溶出可被吸收的药物药9Moleculardrugdesign药物的基本属性(安全性、有效性、稳定性、可控性),在一定意义上,由药物的化学结构所决定药物分子设计是实现新药创制的主要途径和手段通过科学的构思和理论的规划,构建具有预期药理活性的新化学实体的分子操作。Moleculardrugdesign药物的基本属性(10Moleculardrugdesign创制新药的四要素生物靶标的选择检测模型的确定先导化合物的发现先导化合物的优化Moleculardrugdesign创制新药的四要素11Moleculardrugdesign药物分子设计由多学科相互穿插,交替进行药物设计学分子生物学结构生物学基因组生物信息学数学统计学药物化学有机药物化学计算机科学计算化学分子药理学一般药理学Moleculardrugdesign药物分子设计由多学12Introduction新药研发R&DofNewDrugs新药新药研发过程新药研发涉及学科新药研发特点药物分子设计MolecularDrugDesign概念及内容先导化合物LeadCompoundIntroduction新药研发R&DofNew13先导化合物

Leadcompound简称先导物(Lead),是指新发现的对某种靶标和模型呈现明确药理活性的化合物。应与hit相区别先导化合物

Leadcompound简称先导物(Lead14药物分子设计的策略基础分子的多样性、互补性和相似性构成了设计方法的策略基础分子的多样性(diversity)是先导物发现的物质基础分子的互补性(complementarity)是分子识别和受体-配体结合的基础和推动力分子的相似性(similarity)在不同的层次上有不同的含义药物分子设计的策略基础分子的多样性、互补性和相似性构成了设计15Leaddiscovery分子的多样性天然生物活性物质组合化学组合生物合成和组合生物催化基于临床副作用观察产生先导物虚拟筛选分子的互补性基于生物大分子结构和作用机理的药物分子设计反义寡核苷酸Leaddiscovery分子的多样性16Leaddiscoveryandoptimization分子的相似性基于内源性配体分子的药物设计过渡态类似物肽模拟物生物电子等排置换类似物变换药物合成的中间体基于代谢转化Leaddiscoveryandoptimizatio17天然生物活性物质作为先导物天然生物活性物质来源广泛植物动物微生物海洋生物矿物天然生物活性物质作为先导物天然生物活性物质来源广泛18天然生物活性物质作为先导物天然生物活性物质的特点新颖的结构类型(分子多样性)独特的药理活性资源有限及地域性差异有效成分含量很低大多数结构复杂,作用强度不同天然生物活性物质作为先导物天然生物活性物质的特点19天然生物活性物质作为先导物抗生素类天然抗生素微生物培养液半合成抗生素天然生物活性物质作为先导物抗生素类天然抗生素微生物培养液半合20天然生物活性物质作为先导物动物毒素蛇毒Bungarotoxin,N2受体拮抗剂肌松药蛇毒Batroxobin,溶血栓酶抗栓药鱼毒Tetrodotoxin,钠通道阻断剂心血管药物蜂毒Apamin,钙通道阻断剂和钾通道开放剂心血管药物天然生物活性物质作为先导物动物毒素21组合化学

Combinatorialchemistry同时制备含众多分子的化合物库以代数级数增加构建块的数目,库容量则以几何级数增加与高通量筛选(high-throughputscreening,HTS)技术结合,可极大地加快先导物发现和优化的速度组合化学

Combinatorialchemistry同时22组合合成

Combinatorialsynthesis平行合成和混分合成固相合成和液相合成小分子组合合成计算机辅助设计及虚拟库合成八学期选修课“组合化学与新药研究”组合合成

Combinatorialsynthesis平行23组合生物合成

Combinatorialbiosynthesis基本原理基因变异(混合、匹配、交换、突变等)基因克隆多种变异的酶系多种非天然的天然物质组合生物合成

Combinatorialbiosynthe24组合生物催化

Combinatorialbiocatalysis基本原理变异酶系或微生物酶系催化小分子化合物转化多种人工的天然化合物组合生物催化

Combinatorialbiocataly25筛选发现先导物随机与非随机筛选Random/nonrandomscreening高通量筛选High-throughputscreening(HTS)虚拟筛选Virtualscreening筛选发现先导物随机与非随机筛选Random/nonrand26Virtualscreening用计算机筛选的方法称为虚拟筛选,或称insilico筛选,成为insilico-invitro-invivo模式。用一系列“基于知识的滤片”对虚拟库“筛选”,以“浓缩”出能够满足预定标准的化合物。这些滤片包括类药性(druglike),药代动力学性质,毒性,知识产权问题以及与受体的互补性或与配体的相似性等,是通过数据库搜寻和计算化学实现的。Virtualscreening用计算机筛选的方法称为虚拟27VirtualscreeningVirtualscreening28类药性Lipinski归纳的“类药5规则”(RuleofFive),概括了类药的最低标准,即分子量在500以下;氢键的给体不超过5个;氢键的接受体不超过10个;计算的分配系数(正辛醇-水系统)clogP值不超过5。上述原则只限于化合物经被动扩散机理的吸收。化合物的柔性不宜过强。否则会存在许多种构象化合物不得含有重金属和反应活性基团。类药性Lipinski归纳的“类药5规则”(Ruleof29药代动力学性质临床试验被终止淘汰的候选药物40%是由于药代动力学不合理造成的决定药物能够穿越细胞膜并在胞浆中转运的性质是分子的化学结构,表现在分子量,离解常数,亲脂性,极性表面积,以及形成氢键的数目等药物的代谢转化主要在肝脏中发生。将细胞色素P4502D6和3A4催化中心的三维结构作为药效团,可用于预测未知化合物的代谢命运。通过分析化合物的三维结构与半衰期的相关性,可以来预测未知物的代谢模式

药代动力学性质临床试验被终止淘汰的候选药物40%是由于药代动30毒性的预测基于已有化合物的毒性和结构特征,经线性判别分析和多重回归分析得到的模型,可用来预测未知物的毒性。基于知识的专家系统(knowledge-basedsystem)的软件如DEREK,可批处理化合物的致癌性、致畸性、致突变性、刺激性、皮肤敏感性、急性毒性和神经毒等。另一个基于知识的专家系统是HazardExpert程序,通过输入化合物名称、给药途径、剂量和用药时程,程序可给出结果。毒性的预测基于已有化合物的毒性和结构特征,经线性判别分析和多31基于结构的设计在受体结构信息已知的情况下,可根据结合部位的三维结构信息,用分子对接方法,对互补性好、评分高的化合物,可预计有较强的亲和力。若不知受体的三维结构,可根据药效团特征筛选虚拟库,并以不同程度的限制条件,“滤除”与药效团无相似性的分子。基于结构的设计在受体结构信息已知的情况下,可根据结合部位的32知识产权的预测化合物具备自主的知识产权和专利保护的前景,是开发决策的重要指标,筛选虚拟库和组合库时要剔除已被其它专利覆盖或有可能侵权的化合物。所以,完备的化合物检索查新系统可确保化合物结构的新颖性。知识产权的预测化合物具备自主的知识产权和专利保护的前景,是开33Leaddiscovery分子的多样性天然生物活性物质组合化学组合生物合成和组合生物催化基于临床副作用观察产生先导物虚拟筛选分子的互补性基于生物大分子结构和作用机理的药物分子设计反义寡核苷酸Leaddiscovery分子的多样性34基于生物大分子结构

和作用机理设计先导物合理药物设计Rationaldrugdesign合理药物设计即以药物作用靶点的三维结构和生物化学作用机制为基础进行药物设计的方法Structure-baseddrugdesignMechanism-baseddrugdesign基于生物大分子结构

和作用机理设计先导物合理药物设计35Structure-baseddrugdesign了解生物大分子(受体)的三维结构,特别是与配体分子形成的复合物的三维结构,是前提大分子与小分子的结合模式是基础多种方法并用数据库搜寻分子碎片连接从头构建Structure-baseddrugdesign了解生36从酶作用发现先导物

ACE抑制剂ACE的功能将AngiotensinI从羧基端水解掉二肽,活化成AngiotensinII将Bradykinin从羧基端水解掉二肽失活天然ACE底物及一些肽类天然ACE抑制剂每克分子ACE含有一克原子Zn++从酶作用发现先导物

ACE抑制剂ACE的功能37ACE抑制剂ACE的功能羧肽酶A的作用模式肽类抑制剂的结合模式羧烷基脯氨酸卡托普利依那普利等ACE抑制剂ACE的功能羧肽酶A的作用模式肽类抑制剂的结合模38Mechanism-baseddrugdesignGABA转氨酶抑制剂-氨己烯酸酶的过渡态类似物抑制剂Mechanism-baseddrugdesignGAB39反义核苷酸

Antisenseoligonucleotides能够与DNA或信使RNA发生特异性结合,分别阻断核酸的转录或翻译功能,阻止与病理过程相关的核酸或蛋白质的生物合成。这种可与DNA或信使RNA结合的互补链称作反义寡核苷酸。反义核苷酸

Antisenseoligonucleotid40反义核苷酸

Antisenseoligonucleotides基因治疗主要用于由基因组的缺陷或在转录或翻译过程中的失常而发生的疾病,如癌症、病毒性疾病及遗传性疾病。碱基配对是反义核酸作用的基础反义核苷酸

Antisenseoligonucleotid41反义核苷酸

Antisenseoligonucleotides反义核苷酸作为药物的条件制备方法简便、经济具有一定的稳定性具有较强的细胞通透性能在靶细胞内保持一定的浓度能与靶细胞内特定位点作用不与其他生物大分子反应反义核苷酸

Antisenseoligonucleotid42反义核苷酸

Antisenseoligonucleotides反义寡核苷酸的分子大小是设计的重要环节12-25范围,15-20较佳反义核苷酸的类似物局部修饰(碱基杂环、硫代、甲基磷酸酯等)骨架类似物(PNA等)反义核苷酸

Antisenseoligonucleotid43Leaddiscoveryandoptimization分子的相似性基于内源性配体分子的药物设计过渡态类似物肽模拟物生物电子等排置换类似物变换药物合成的中间体基于代谢转化Leaddiscoveryandoptimizatio44从内源性活性物质发现先导物酶反应过程:酶抑制剂酶结构底物、过渡态、产物结构ACEI、COX-2、GABA-T、MAO抑制剂等抗代谢物:酶抑制剂,致死合成与受体作用过程:激动剂或拮抗剂受体结构配体结构肾上腺素能药物、胆碱能药物、甾体药物等从内源性活性物质发现先导物酶反应过程:酶抑制剂45H2受体拮抗剂类抗溃疡药

选定靶点-组胺H2受体确立研发目标-抑制胃酸分泌药物建立动物筛选模型-麻醉兔灌胃从H2受体天然激动剂-组胺入手,以其为先导结构,保留咪唑环,改变侧链,开始优化H2受体拮抗剂类抗溃疡药选定靶点-组胺H2受体46IIb/IIIa糖蛋白受体拮抗剂血栓形成的关键步骤是纤维蛋白原与血小板IIb/IIIa受体结合。被IIb/IIIa受体识别和相互作用的主要区段是纤维蛋白原的三肽片断Arg-Gly-Asp(RGD)。蛇毒或水蛭素中含有RGD的线形或环状肽,是阻断IIb/IIIa受体活化从而抑制血小板聚集的药效团。含有或模拟RGD结构的肽或拟肽可作为纤维蛋白原的拮抗剂,是创制抗血栓药物的一个新途径。IIb/IIIa糖蛋白受体拮抗剂血栓形成的关键步骤是纤维蛋白47生物电子等排Bioisosterism1919,Langmuir,无机化学原子总数相同,电子总数相同,电子的排列状态相同的分子或原子团,叫做电子等排体Isosteres,或译同电异素物同电异素物的物理性质有惊人的相似之处N2CO,N2OCO2,NO3-CO32-

生物电子等排Bioisosterism1919,Lang48生物电子等排Bioisosterism1921,Hückle1925,Grimm,有机化学具有同数的价电子的分子或原子团,不论是否包含同数的原子或总数相同的电子,都叫做电子等排体生物电子等排Bioisosterism1921,Hück49氢化物置换规则

Hydridedisplacementtheory

从周期表中的第四列起,任何一个元素的原子与一个或几个氢原子结合成的分子或原子团,就化学作用的观点说,都可以当作是假原子pseudoatom假原子的化学性质,由其所含的氢原子数目的不同而有差别,但都依次与其邻近的较高族元素相似氢化物置换规则

Hydridedisplacementt50生物电子等排Bioisosterism1932,Erlenmeyer,药物化学原子团中只有边界电子boundaryelectrons或外围电子outerelectrons的数目是决定电子等排体的条件用电子等排体性质相似的原理研究药理作用与化学结构的关系生物电子等排Bioisosterism1932,Erle51生物电子等排Bioisosterism50´Friedman,生物电子等排外围电子数目相同或排列相似,具有相同生物活性或拮抗生物活性的原子、基团或部分结构,即为生物电子等排体生物电子等排Bioisosterism50´Friedm52类似物变化的一般方法剖裂物同系物引入烯键合环和开环大基团的引入、去除或置换改变基团的电性生物电子等排孪药类似物变化的一般方法剖裂物53同系物变换

HomologyprincipleA-(CH2)n-B彼此互为同系物同系物的理化性质及生物活性的变化无统一规律递变gradation交替alternation翻转inversion同系物变换

HomologyprincipleA-(C54引入烯键插烯原理(Vinylogyprinciple):插烯物A-(CH=CH)n-B,A、B之间的电性可通过共轭双键传递。可应用于其他共轭体系:亚胺、乙炔基、苯环、芳杂环等。引入烯键插烯原理(Vinylogyprinciple):插55引入烯键在饱和碳链上引入双键,分子的构型和构象改变较大,生物活性变化也较大。插烯物与原药物相比,通常易代谢降解、活性降低和毒性可能增大(共轭双键的反应性)。插烯物变换时,A-(CH=CH)n-B,改变了A、B间的距离。引入烯键在饱和碳链上引入双键,分子的构型和构象改变较大,生物56合环和开环合环使构象固定,影响药效学性质药效不变药效增强药效降低产生新药效活性构象的研究改变药动学性质,可用于设计前药合环和开环合环使构象固定,影响药效学性质57大基团的引入、去除或置换引入大基团往往造成生物活性很大变化,甚至造成作用翻转在易变结构附近引入障碍基团,可稳定易变部位将稳定基团换以易变基团,可使作用限于局部或迅速代谢失活,减轻副作用引入极性或离子性基团,可限制药物分布大基团的引入、去除或置换引入大基团往往造成生物活性很大变化,58改变基团的电性诱导效应由于元素电负性的不同,分子内电荷沿着单键移动所产生的静电引力共轭效应分子中存在的-共轭或p-共轭,由于电子的离域化而导致电荷的流动改变基团的电性诱导效应59诱导效应(+I/-I)负诱导效应的吸电子性强弱顺序-NH3+,-NR3+,-NO2,-CN,-COOH,-COOR,-CHO,-COR,-F,-Cl,-Br,-OH,-OR,-SH,-SR,-CH=CH2,-CR=CR2,-CCH正诱导效应的推电子性强弱顺序-CH3,-CH2R,-CHR2,-CR3,-COO-诱导效应(+I/-I)负诱导效应的吸电子性强弱顺序60共轭效应(+R/-R)同时具有-R和-I的基团-NO2,-CN,-CHO,-COR,-COOH,-COOR,-CONH2,-CF3同时具有+R和+I的基团-O-,-S-,-CH3,-CR3同时具有+R和-I的基团-F,-Cl,-Br,-I,-OH,-OR,-OCOR,-SH,-SR,-NH2,-NR2,-NHCOR共轭效应(+R/-R)同时具有-R和-I的基团61孪药Twindrugs拼合原理Associationprinciple药理作用的类型拼合结构的专属性有效剂量拼合的方式孪药两个相同的或不同的先导物或药物经共价键连接,缀合成新的分子,称作孪药。孪药Twindrugs拼合原理Association62基于代谢转化发现和优化先导物代谢活化活性代谢物作为先导物前药设计代谢失活软药设计基于代谢转化发现和优化先导物代谢活化63前药概念的提出Albert,A.(1958)Chemicalaspectsofselectivetoxicity.Nature(London)1958;182:421-423.提出前药概念,描述经过生物转化后才显示出药理作用的任何化合物Harper,N.J.Druglatentiation.J.Med.Pharm.Chem.1959;1:467-500.提出药效潜伏化概念,通过对生物活性化合物的化学修饰形成新的化合物,后者在体内酶的作用下释放出母体化合物而发挥作用。前药概念的提出Albert,A.(1958)Chemi64前药的概念前药(prodrug)泛指一类体外活性较小或无活性,在体内经酶或非酶作用,释出活性物质而发挥药理作用的化合物。载体连接前药(carrier-linkedprodrug)生物前体(bioprecursor)前药特指将活性药物(原药)与某种化学基团、片段或分子(或称暂时转运基团)经共价键连接,生成的新化学实体。前药的概念前药(prodrug)泛指一类体外活性较小或无活性65口服氨苄西林前药氨苄西林的口服吸收率为40%,其前药几乎可以定量吸收(98-99%)前药在血液中释放氨苄西林的速度快(不超过15min)巴氨西林释放出的载体是体内存在的物质,所以巴氨西林的耐受性比匹氨西林更好口服巴氨西林后与肌注等摩尔氨苄西林的血药浓度相当前药用量(0.8-1.0g/d)比氨苄西林用量(2.0g/d)少得多匹氨西林和巴氨西林在体外无抗菌活性,只有在体内释放出氨苄西林后才表现出活性口服氨苄西林前药氨苄西林的口服吸收率为40%,其前药几乎可以66前药的特征原药与载体一般以共价键连接前药可在体内断裂形成原药,为可逆性或生物可逆性药物前药应无活性或活性低于原药前药与载体分子应无毒性前药在体内产生原药的速率应是快速动力学过程,以保障原药在作用部位快速释放,有足够的药物浓度,并应尽量减低前药的直接代谢。前药的特征原药与载体一般以共价键连接67制备前药的一般方法醇类:酯、缩醛或缩酮羧酸类:酯、伯酰胺、酸酐胺类:酰胺、亚胺、偶氮脒类:氨基甲酸酯羰基类:缩醛或缩酮、噁唑啉、噻唑啉、亚胺、肟制备前药的一般方法醇类:酯、缩醛或缩酮68前药的应用增加脂溶性以改善吸收和分布提高作用部位特异性提高化学稳定性消除不适宜的制剂性质延长作用时间增加水溶性前药的应用增加脂溶性以改善吸收和分布69提高作用部位特异性部位指向性药物输送Site-directeddrugdelivery能增加或选择性转运原药到达作用部位的前药部位特异性药物释放Site-specificdrugrelease虽然全身分布,但只在靶器官才产生作用的前药提高作用部位特异性部位指向性药物输送70ADEPT的酶系羧肽酶G2(CPG2)羧肽酶A碱性磷酸酶糖苷酶青霉素酰胺酶-内酰胺酶ADEPT的酶系羧肽酶G2(CPG2)71软药Softdrug软药是指一类本身有治疗效用或生物活性的化学实体,当在体内起作用后,经预料的和可控的、通常为一步反应的代谢作用,转变成无活性和无毒性的化合物。硬药的软性类似物以无活性代谢物为线索设计软药软药Softdrug软药是指一类本身有治疗效用或生物活性72软药Softdrug与已知硬药的结构很相似在非必须结构部位有易变结构主要或唯一的代谢途径是可预知的通过结构修饰可以调控代谢速率代谢产物的毒性和活性极低只需简单的代谢反应,不需P450参与的酶促过程软药Softdrug与已知硬药的结构很相似73新药研究概论引言Introduction先导化合物的产生Leaddiscovery先导化合物的优化Leadoptimization新药研究概论引言74Introduction

新药研发R&DofNewDrugs

新药新药研发过程新药研发涉及学科新药研发特点

药物分子设计MolecularDrugDesign

概念及内容

先导化合物LeadCompoundIntroduction新药研发R&DofNe75NewDrugs

新药系指我国未生产过的药品。按审批管理的要求,新药分为中药、化学药品和生物药品(新药审批办法)新化学实体NCEnewchemicalentities

首次成为药品的新化学结构NewDrugs新药系指我国未生产过的药品。按审批管理的76新药研发过程1、制定研究计划,设计实验方案并实施之,获得潜在NCE2、临床前研究,获得IND(investigationalnewdrug)西药临床前22项(新药证书,25项)中药临床前19项(新药证书,22项)新药研发过程1、制定研究计划,设计实验方案并实施之,获得潜77新药研发过程3、临床试验(或临床验证),获得NDA(newdrugapproval)PhaseI:20-30例健康受试者PhaseII:不少于100例典型患者PhaseIII:不少于300例患者4、上市后研究,临床药理一类试生产期,PhaseIV:>2000例新药研发过程3、临床试验(或临床验证),获得NDA(new78新药研发是一项系统工程,涉及多个学科分子生物学分子药理学生物信息学药物化学计算机科学药物分析化学药理学毒理学药剂学制药工艺学新药研发是一项系统工程,涉及多个学科分子生物学79新药研发特点投资高周期长风险高利润高竞争激烈新药研发特点投资高80Introduction

新药研发R&DofNewDrugs新药新药研发过程新药研发涉及学科新药研发特点药物分子设计MolecularDrugDesign概念及内容先导化合物LeadCompoundIntroduction新药研发R&DofNe81药物作用的三个重要相给药剂量剂型崩解药物溶出可被吸收的药物药物利用度吸收、分布、代谢、排泄可产生作用的药物生物利用度药物与靶点相互作用效应药剂相药代动力相药效相药物作用的三个重要相给药剂量剂型崩解药物溶出可被吸收的药物药82Moleculardrugdesign药物的基本属性(安全性、有效性、稳定性、可控性),在一定意义上,由药物的化学结构所决定药物分子设计是实现新药创制的主要途径和手段通过科学的构思和理论的规划,构建具有预期药理活性的新化学实体的分子操作。Moleculardrugdesign药物的基本属性(83Moleculardrugdesign创制新药的四要素生物靶标的选择检测模型的确定先导化合物的发现先导化合物的优化Moleculardrugdesign创制新药的四要素84Moleculardrugdesign药物分子设计由多学科相互穿插,交替进行药物设计学分子生物学结构生物学基因组生物信息学数学统计学药物化学有机药物化学计算机科学计算化学分子药理学一般药理学Moleculardrugdesign药物分子设计由多学85Introduction新药研发R&DofNewDrugs新药新药研发过程新药研发涉及学科新药研发特点药物分子设计MolecularDrugDesign概念及内容先导化合物LeadCompoundIntroduction新药研发R&DofNew86先导化合物

Leadcompound简称先导物(Lead),是指新发现的对某种靶标和模型呈现明确药理活性的化合物。应与hit相区别先导化合物

Leadcompound简称先导物(Lead87药物分子设计的策略基础分子的多样性、互补性和相似性构成了设计方法的策略基础分子的多样性(diversity)是先导物发现的物质基础分子的互补性(complementarity)是分子识别和受体-配体结合的基础和推动力分子的相似性(similarity)在不同的层次上有不同的含义药物分子设计的策略基础分子的多样性、互补性和相似性构成了设计88Leaddiscovery分子的多样性天然生物活性物质组合化学组合生物合成和组合生物催化基于临床副作用观察产生先导物虚拟筛选分子的互补性基于生物大分子结构和作用机理的药物分子设计反义寡核苷酸Leaddiscovery分子的多样性89Leaddiscoveryandoptimization分子的相似性基于内源性配体分子的药物设计过渡态类似物肽模拟物生物电子等排置换类似物变换药物合成的中间体基于代谢转化Leaddiscoveryandoptimizatio90天然生物活性物质作为先导物天然生物活性物质来源广泛植物动物微生物海洋生物矿物天然生物活性物质作为先导物天然生物活性物质来源广泛91天然生物活性物质作为先导物天然生物活性物质的特点新颖的结构类型(分子多样性)独特的药理活性资源有限及地域性差异有效成分含量很低大多数结构复杂,作用强度不同天然生物活性物质作为先导物天然生物活性物质的特点92天然生物活性物质作为先导物抗生素类天然抗生素微生物培养液半合成抗生素天然生物活性物质作为先导物抗生素类天然抗生素微生物培养液半合93天然生物活性物质作为先导物动物毒素蛇毒Bungarotoxin,N2受体拮抗剂肌松药蛇毒Batroxobin,溶血栓酶抗栓药鱼毒Tetrodotoxin,钠通道阻断剂心血管药物蜂毒Apamin,钙通道阻断剂和钾通道开放剂心血管药物天然生物活性物质作为先导物动物毒素94组合化学

Combinatorialchemistry同时制备含众多分子的化合物库以代数级数增加构建块的数目,库容量则以几何级数增加与高通量筛选(high-throughputscreening,HTS)技术结合,可极大地加快先导物发现和优化的速度组合化学

Combinatorialchemistry同时95组合合成

Combinatorialsynthesis平行合成和混分合成固相合成和液相合成小分子组合合成计算机辅助设计及虚拟库合成八学期选修课“组合化学与新药研究”组合合成

Combinatorialsynthesis平行96组合生物合成

Combinatorialbiosynthesis基本原理基因变异(混合、匹配、交换、突变等)基因克隆多种变异的酶系多种非天然的天然物质组合生物合成

Combinatorialbiosynthe97组合生物催化

Combinatorialbiocatalysis基本原理变异酶系或微生物酶系催化小分子化合物转化多种人工的天然化合物组合生物催化

Combinatorialbiocataly98筛选发现先导物随机与非随机筛选Random/nonrandomscreening高通量筛选High-throughputscreening(HTS)虚拟筛选Virtualscreening筛选发现先导物随机与非随机筛选Random/nonrand99Virtualscreening用计算机筛选的方法称为虚拟筛选,或称insilico筛选,成为insilico-invitro-invivo模式。用一系列“基于知识的滤片”对虚拟库“筛选”,以“浓缩”出能够满足预定标准的化合物。这些滤片包括类药性(druglike),药代动力学性质,毒性,知识产权问题以及与受体的互补性或与配体的相似性等,是通过数据库搜寻和计算化学实现的。Virtualscreening用计算机筛选的方法称为虚拟100VirtualscreeningVirtualscreening101类药性Lipinski归纳的“类药5规则”(RuleofFive),概括了类药的最低标准,即分子量在500以下;氢键的给体不超过5个;氢键的接受体不超过10个;计算的分配系数(正辛醇-水系统)clogP值不超过5。上述原则只限于化合物经被动扩散机理的吸收。化合物的柔性不宜过强。否则会存在许多种构象化合物不得含有重金属和反应活性基团。类药性Lipinski归纳的“类药5规则”(Ruleof102药代动力学性质临床试验被终止淘汰的候选药物40%是由于药代动力学不合理造成的决定药物能够穿越细胞膜并在胞浆中转运的性质是分子的化学结构,表现在分子量,离解常数,亲脂性,极性表面积,以及形成氢键的数目等药物的代谢转化主要在肝脏中发生。将细胞色素P4502D6和3A4催化中心的三维结构作为药效团,可用于预测未知化合物的代谢命运。通过分析化合物的三维结构与半衰期的相关性,可以来预测未知物的代谢模式

药代动力学性质临床试验被终止淘汰的候选药物40%是由于药代动103毒性的预测基于已有化合物的毒性和结构特征,经线性判别分析和多重回归分析得到的模型,可用来预测未知物的毒性。基于知识的专家系统(knowledge-basedsystem)的软件如DEREK,可批处理化合物的致癌性、致畸性、致突变性、刺激性、皮肤敏感性、急性毒性和神经毒等。另一个基于知识的专家系统是HazardExpert程序,通过输入化合物名称、给药途径、剂量和用药时程,程序可给出结果。毒性的预测基于已有化合物的毒性和结构特征,经线性判别分析和多104基于结构的设计在受体结构信息已知的情况下,可根据结合部位的三维结构信息,用分子对接方法,对互补性好、评分高的化合物,可预计有较强的亲和力。若不知受体的三维结构,可根据药效团特征筛选虚拟库,并以不同程度的限制条件,“滤除”与药效团无相似性的分子。基于结构的设计在受体结构信息已知的情况下,可根据结合部位的105知识产权的预测化合物具备自主的知识产权和专利保护的前景,是开发决策的重要指标,筛选虚拟库和组合库时要剔除已被其它专利覆盖或有可能侵权的化合物。所以,完备的化合物检索查新系统可确保化合物结构的新颖性。知识产权的预测化合物具备自主的知识产权和专利保护的前景,是开106Leaddiscovery分子的多样性天然生物活性物质组合化学组合生物合成和组合生物催化基于临床副作用观察产生先导物虚拟筛选分子的互补性基于生物大分子结构和作用机理的药物分子设计反义寡核苷酸Leaddiscovery分子的多样性107基于生物大分子结构

和作用机理设计先导物合理药物设计Rationaldrugdesign合理药物设计即以药物作用靶点的三维结构和生物化学作用机制为基础进行药物设计的方法Structure-baseddrugdesignMechanism-baseddrugdesign基于生物大分子结构

和作用机理设计先导物合理药物设计108Structure-baseddrugdesign了解生物大分子(受体)的三维结构,特别是与配体分子形成的复合物的三维结构,是前提大分子与小分子的结合模式是基础多种方法并用数据库搜寻分子碎片连接从头构建Structure-baseddrugdesign了解生109从酶作用发现先导物

ACE抑制剂ACE的功能将AngiotensinI从羧基端水解掉二肽,活化成AngiotensinII将Bradykinin从羧基端水解掉二肽失活天然ACE底物及一些肽类天然ACE抑制剂每克分子ACE含有一克原子Zn++从酶作用发现先导物

ACE抑制剂ACE的功能110ACE抑制剂ACE的功能羧肽酶A的作用模式肽类抑制剂的结合模式羧烷基脯氨酸卡托普利依那普利等ACE抑制剂ACE的功能羧肽酶A的作用模式肽类抑制剂的结合模111Mechanism-baseddrugdesignGABA转氨酶抑制剂-氨己烯酸酶的过渡态类似物抑制剂Mechanism-baseddrugdesignGAB112反义核苷酸

Antisenseoligonucleotides能够与DNA或信使RNA发生特异性结合,分别阻断核酸的转录或翻译功能,阻止与病理过程相关的核酸或蛋白质的生物合成。这种可与DNA或信使RNA结合的互补链称作反义寡核苷酸。反义核苷酸

Antisenseoligonucleotid113反义核苷酸

Antisenseoligonucleotides基因治疗主要用于由基因组的缺陷或在转录或翻译过程中的失常而发生的疾病,如癌症、病毒性疾病及遗传性疾病。碱基配对是反义核酸作用的基础反义核苷酸

Antisenseoligonucleotid114反义核苷酸

Antisenseoligonucleotides反义核苷酸作为药物的条件制备方法简便、经济具有一定的稳定性具有较强的细胞通透性能在靶细胞内保持一定的浓度能与靶细胞内特定位点作用不与其他生物大分子反应反义核苷酸

Antisenseoligonucleotid115反义核苷酸

Antisenseoligonucleotides反义寡核苷酸的分子大小是设计的重要环节12-25范围,15-20较佳反义核苷酸的类似物局部修饰(碱基杂环、硫代、甲基磷酸酯等)骨架类似物(PNA等)反义核苷酸

Antisenseoligonucleotid116Leaddiscoveryandoptimization分子的相似性基于内源性配体分子的药物设计过渡态类似物肽模拟物生物电子等排置换类似物变换药物合成的中间体基于代谢转化Leaddiscoveryandoptimizatio117从内源性活性物质发现先导物酶反应过程:酶抑制剂酶结构底物、过渡态、产物结构ACEI、COX-2、GABA-T、MAO抑制剂等抗代谢物:酶抑制剂,致死合成与受体作用过程:激动剂或拮抗剂受体结构配体结构肾上腺素能药物、胆碱能药物、甾体药物等从内源性活性物质发现先导物酶反应过程:酶抑制剂118H2受体拮抗剂类抗溃疡药

选定靶点-组胺H2受体确立研发目标-抑制胃酸分泌药物建立动物筛选模型-麻醉兔灌胃从H2受体天然激动剂-组胺入手,以其为先导结构,保留咪唑环,改变侧链,开始优化H2受体拮抗剂类抗溃疡药选定靶点-组胺H2受体119IIb/IIIa糖蛋白受体拮抗剂血栓形成的关键步骤是纤维蛋白原与血小板IIb/IIIa受体结合。被IIb/IIIa受体识别和相互作用的主要区段是纤维蛋白原的三肽片断Arg-Gly-Asp(RGD)。蛇毒或水蛭素中含有RGD的线形或环状肽,是阻断IIb/IIIa受体活化从而抑制血小板聚集的药效团。含有或模拟RGD结构的肽或拟肽可作为纤维蛋白原的拮抗剂,是创制抗血栓药物的一个新途径。IIb/IIIa糖蛋白受体拮抗剂血栓形成的关键步骤是纤维蛋白120生物电子等排Bioisosterism1919,Langmuir,无机化学原子总数相同,电子总数相同,电子的排列状态相同的分子或原子团,叫做电子等排体Isosteres,或译同电异素物同电异素物的物理性质有惊人的相似之处N2CO,N2OCO2,NO3-CO32-

生物电子等排Bioisosterism1919,Lang121生物电子等排Bioisosterism1921,Hückle1925,Grimm,有机化学具有同数的价电子的分子或原子团,不论是否包含同数的原子或总数相同的电子,都叫做电子等排体生物电子等排Bioisosterism1921,Hück122氢化物置换规则

Hydridedisplacementtheory

从周期表中的第四列起,任何一个元素的原子与一个或几个氢原子结合成的分子或原子团,就化学作用的观点说,都可以当作是假原子pseudoatom假原子的化学性质,由其所含的氢原子数目的不同而有差别,但都依次与其邻近的较高族元素相似氢化物置换规则

Hydridedisplacementt123生物电子等排Bioisosterism1932,Erlenmeyer,药物化学原子团中只有边界电子boundaryelectrons或外围电子outerelectrons的数目是决定电子等排体的条件用电子等排体性质相似的原理研究药理作用与化学结构的关系生物电子等排Bioisosterism1932,Erle124生物电子等排Bioisosterism50´Friedman,生物电子等排外围电子数目相同或排列相似,具有相同生物活性或拮抗生物活性的原子、基团或部分结构,即为生物电子等排体生物电子等排Bioisosterism50´Friedm125类似物变化的一般方法剖裂物同系物引入烯键合环和开环大基团的引入、去除或置换改变基团的电性生物电子等排孪药类似物变化的一般方法剖裂物126同系物变换

HomologyprincipleA-(CH2)n-B彼此互为同系物同系物的理化性质及生物活性的变化无统一规律递变gradation交替alternation翻转inversion同系物变换

HomologyprincipleA-(C127引入烯键插烯原理(Vinylogyprinciple):插烯物A-(CH=CH)n-B,A、B之间的电性可通过共轭双键传递。可应用于其他共轭体系:亚胺、乙炔基、苯环、芳杂环等。引入烯键插烯原理(Vinylogyprinciple):插128引入烯键在饱和碳链上引入双键,分子的构型和构象改变较大,生物活性变化也较大。插烯物与原药物相比,通常易代谢降解、活性降低和毒性可能增大(共轭双键的反应性)。插烯物变换时,A-(CH=CH)n-B,改变了A、B间的距离。引入烯键在饱和碳链上引入双键,分子的构型和构象改变较大,生物129合环和开环合环使构象固定,影响药效学性质药效不变药效增强药效降低产生新药效活性构象的研究改变药动学性质,可用于设计前药合环和开环合环使构象固定,影响药效学性质130大基团的引入、去除或置换引入大基团往往造成生物活性很大变化,甚至造成作用翻转在易变结构附近引入障碍基团,可稳定易变部位将稳定基团换以易变基团,可使作用限于局部或迅速代谢失活,减轻副作用引入极性或离子性基团,可限制药物分布大基团的引入、去除或置换引入大基团往往造成生物活性很大变化,131改变基团的电性诱导效应由于元素电负性的不同,分子内电荷沿着单键移动所产生的静电引力共轭效应分子中存在的-共轭或p-共轭,由于电子的离域化而导致电荷的流动改变基团的电性诱导效应132诱导效应(+I/-I)负诱导效应的吸电子性强弱顺序-NH3+,-NR3+,-NO2,-CN,-COOH,-COOR,-CHO,-COR,-F,-Cl,-Br,-OH,-OR,-SH,-SR,-CH=CH2,-CR=CR2,-CCH正诱导效应的推电子性强弱顺序-C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论