《分层随机抽样》课件与同步练习_第1页
《分层随机抽样》课件与同步练习_第2页
《分层随机抽样》课件与同步练习_第3页
《分层随机抽样》课件与同步练习_第4页
《分层随机抽样》课件与同步练习_第5页
已阅读5页,还剩92页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.1.2分层随机抽样第九章统计课程目标1.理解分层抽样的基本思想和适用情形.2.掌握分层抽样的实施步骤.3.了解两种抽样方法的区别和联系.数学学科素养1.数学抽象:分层抽样的相关概念;2.数据分析:分层抽样的应用;3.数学运算:分层抽样中各层样本容量的计算.

自主预习,回答问题阅读课本181-184页,思考并完成以下问题1、什么情况下适用分层抽样?分层抽样的步骤是?2、简单随机抽样和分层抽样有什么区别与联系?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。1、简单随机抽样的概念:2、简单随机抽样的特点:3、简单随机抽样的常用方法:③机会均等抽样.①总体个数有限;②逐个进行抽取;①抽签法;

②随机数表法.

设一个总体含有有限个个体,并记其个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的机会相等,就称这样的抽样为简单随机抽样.温故知新问题与探究抽样调查最核心的问题是样本的代表性,简单随机抽样是使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性,有可能会出现比较“极端”的样本,例如,在对树人中学高一年级学生身高的调查中,可能出现样本中50个个体大部分来自高个子或矮个子的情形,这种“极端”样本的平均数会大幅度地偏离总体平均数,从而使得估计出现较大的误差.

能否利用总体中的一些额外信息对抽样方法进行改进呢?在对树人中学高一年级学生身高的调查中,采取简单随机抽样的方式抽取了50名学生。1.抽样调查最核心的问题是什么?2.会不会出现样本中50个个体大部分来自高个子或矮个子的情形?3.为什么会出现这种“极端样本”?4.如何避免这种“极端样本”?样本代表性会抽样结果的随机性个体差异较大分组抽样,减少组内差距问题与探究

在树人中学高一年级的712名学生中,男生有326名、女生有386名。样本量在男生、女生中应如何分配?

假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?80604020

0近视率%小学初中高中

你认为哪些因素影响学生视力?抽样要考虑哪些因素?分层抽样

每一层抽取的样本数=一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样(stratifiedrandomsampling),每一个子总体称为层.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.×总样本量概念解析做一做归纳总结分层随机抽样的平均数1.在简单随机抽样中如何估计总体平均数?2.那么在分层随机抽样中如何估计总体平均数呢?是否也可以直接用样本平均数进行估计?问题与探究分层随机抽样中的总体平均数与样本平均数概念解析第1层的总体平均数和样本平均数为:第2层的总体平均数和样本平均数为:总体平均数和样本平均数为:由于用第一层的样本平均数可以估计第1层的总体平均数,第二层的样本平均数可以估计第2层的总体平均数,因此我们可以用估计总体平均数对各层样本平均数加权(层权)求和分层随机抽样如何估计总体平均数在比例分配的分层随机中抽样中例1.在树人中学高一年级的712名学生,男生有326名、女生有386名,分别抽取的男生23名男生、27名女生样本数据如下173.0174.0166.0172.0170.0165.0165.0168.0164.0173.0172.0173.0175.0168.0170.0172.0176.0175.0168.0173.0167.0170.0175.0163.0164.0161.0157.0162.0165.0168.0155.0164.0162.5154.0154.0164.0149.0159.0161.0170.0171.0155.0148.0172.0162.5158.0155.5157.0163.0172.0样本女生平均身高=160.6,样本男生平均身高=170.6典例解析高一年级有男生490人,女生510人,张华按照男生女生进行分层,得到男生女生平均身高分别为170.2cm和160.8cm。(1)如果张华在各层中按比例分配样本,总样本量为100.那么男生、女生中分别抽取了多少名?在这种情况下,请估计高一年级全体学生的平均身高。(2)如果张华从男生、女生中抽取的样本量分别为30和70,那么在这种情况下,如何估计高一全体学生的平均身高。小明用比例分配的分层抽样方法,从高一年级的学生中抽取了十个样本量为50的样本,计算出样本平均数。与相同样本量的简单随机抽样的结果比较。序号12345678910简单随机抽样165.2162.8164.4164.4165.6164.8165.3164.3165.7165.0分层随机抽样165.8165.1164.3164.3166.4164.6165.2164.9166.1165.12.相对而言,分层抽样的样本平均数波动幅度更均匀,简单随机抽样的样本平均数

有的偏离总体平均数的幅度比较大的极端数据。3.分层随机抽样的结果并不是每一次都优于简单随机抽样。归纳总结1.分层抽样的样本平均的围绕总体平均数波动,与简单随机抽样的结果相比分

层抽样并没有明显优于简单随机抽样。当堂达标3、分层随机抽样中如何用样本估计总体平均值。1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。(3)在每层抽样时,应采用简单随机抽样的方法进行抽样。2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。课堂小结第九章统计《9.1.2分层随机抽样》同步练习1.定义一般地,在抽样时,将总体分成________的层,然后按照______________,从各层________抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫分层抽样.2.适用范围当总体是由________的几个部分组成时,往往采用分层抽样.互不交叉一定的比例独立地

知识清单差异明显3.分层抽样的步骤(1)根据已掌握的信息,将总体分成________.(2)根据总体中的个体数N和样本容量n计算出抽样比________.(3)根据抽样比k计算出各层中应抽取的个体数:______(其中Ni为第i层所包含的个体总数).(4)按步骤3所确定的数在各层中随机抽取个体,并合在一起得到容量为n的样本.若干部分4.两种抽样方法的区别和联系类别共同点各自特点相互联系适用范围简单随机抽样从总体中逐个抽取最基本的抽样方法分层抽样将总体分成几部分,每一部分按比例抽取每层抽样时采用抽样过程中各个个体被抽到的机会相等,且都是不放回抽取总体容量较少抽样过程中各个个体被抽到的机会相等,且都是不放回抽取

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论