2016届高考数学大一轮总复习(理科)第八章立体几何第2讲空间几何体的表面积与体积_第1页
2016届高考数学大一轮总复习(理科)第八章立体几何第2讲空间几何体的表面积与体积_第2页
2016届高考数学大一轮总复习(理科)第八章立体几何第2讲空间几何体的表面积与体积_第3页
2016届高考数学大一轮总复习(理科)第八章立体几何第2讲空间几何体的表面积与体积_第4页
2016届高考数学大一轮总复习(理科)第八章立体几何第2讲空间几何体的表面积与体积_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精第2讲空间几何体的表面积与体积一、选择题1.棱长为2的正周围体的表面积是().A.错误!B.4C.4错误!D.16剖析每个面的面积为:错误!×2×2×=错误!。∴正周围体的表错误!面积为:43.答案C2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的().A.2倍B.2倍C。倍D.错误!错误!错误!倍剖析由题意知球的半径扩大到原来的错误!倍,则体积V=错误!πR3,知体积扩大到原来的22倍.答案B3.一个几何体的三视图以下列图,那么此几何体的侧面积(单位:cm2)为().学必求其心得,业必贵于专精A.48

B.64

C.80

D.120剖析

据三视图知

,该几何体

是一个正四棱锥(底面边长为8),直观图如△PAB的边AB上的高,且PE体的侧面积是S=4S△PAB=4×

图,PE为侧面=5.∴此几何错误!×8×5=80(cm2).答案C4.已知三棱锥S-ABC的所有极点都在球O长为1的正三角形,SC为球O的直径,且积为

的球面上,△ABC是边SC=2,则此棱锥的体(

).A。错误!B.错误!C.错误!D.错误!剖析在直角三角形ASC中,AC=1,∠SAC=90°,SC=2,∴SA=错误!=错误!;同理SB=错误!。过A点作SC的垂线交SC于D点,连接DB,因△SAC≌△SBC,故BD⊥SC,故SC⊥平面ABD,且平面ABD为等腰三角形,因∠ASC=30°,故AD=错误!SA=错误!,学必求其心得,业必贵于专精则△ABD的面积为错误!×1×错误!=错误!,则三棱锥的体积为错误!×错误!×2=错误!。答案A5.某品牌香水瓶的三视图以下(单位:cm),则该几何体的表面积为().A.错误!cm2B。错误!cm2C.错误!cm2D.错误!cm2剖析该几何体的上下为长方体,中间为圆柱.S表面积=S下长方体+S上长方体+S圆柱侧-2S圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2错π×误!1-2×π错误!2=94+错误!。答案C6.已知球的直径SC=4,A,B是该球球面上的两点,AB=错误!,∠ASC=∠BSC=30°,则棱锥S-ABC的体积为().学必求其心得,业必贵于专精A.3错误!B.2错误!C.错误!D.1剖析由题可知AB必然在与直径SC垂直的小圆面上,作过AB的小圆交直径SC于D,设SD=x,则DC=4-x,此时所求棱锥即切割成两个棱锥S—ABD和C-ABD,在△SAD和△SBD中,由已知条件可得AD=BD=错误!x,又因为SC为直径,因此∠SBC=∠SAC=90°,因此∠DCB=∠DCA=60°,在△BDC中,BD=错误!4-x),因此错误!x=错误!(4-x),因此x=3,AD=BD=错误!,因此三角形ABD为正三角形,因此V=错误!S△ABD×4=错误!。答案C二、填空题7.已知S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于________.剖析将三棱锥S-ABC补形成以SA、AB、BC为棱的长方体,其对角线SC为球O的直径,因此2R=SC=2,R=1,∴表面积为4πR2=4π。答案4π8.以下列图,已知一个多面体的平面张开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.学必求其心得,业必贵于专精剖析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为错误!,连接极点和底面中心即为高,可求得高为错误!,因此体积V=错误!×1错误!=错误!.×1×答案错误!9.已知某几何体的直观图及三视图以下列图,三视图的轮廓均为正方形,则该几何体的表面积为________.剖析借助常有的正方体模型

解决.由三视图知,该几何体由正方体沿面

AB1D1

与面CB1D1

截去两个角所得

,其表面

由两个等边三角形、四个直角三角形和一个

正方形组成.计算得其表面积为

12+4错误!。答案

12+4错误!学必求其心得,业必贵于专精10.以下列图,正方体ABCD-A1B1C1D1的棱长为6,则以正方体ABCD-A1B1C1D1的中心为极点,以平面AB1D1截正方体外接球所得的圆为底面的圆锥的全面积为________.剖析设O为正方体外接球的球心,则O也是正方体的中心,O到平面AB1D1的距离是体对角线长的错误!,即为错误!。又球的半径是正方体对角线长的一半,即为3错误!,由勾股定理可知,截面圆的半径为错误!=2错误!,圆锥底面面积为S1=π·(2错误!)2=24π,圆锥的母线即为球的半径3错误!,圆锥的侧面积为S2=π×2错误!×3错误!=18错误!π.因此圆锥的全面积为S=S2+S1=18错误!π+24π=18(错误!+π.答案(18错误!+24)π三、解答题11.一个几何体的三视图以下列图.已知主视图是底边长为1的平行四边形,左视图是一个长为错误!,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.学必求其心得,业必贵于专精解(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为错误!,因此V=1×1×错误!=错误!.(2)由三视图可知,该平行六面体中,A1D⊥平面ABCD,CD⊥平面BCC1B1,因此AA1=2,侧面ABB1A1,CDD1C1均为矩形,S=2×(1×1+1错×误!+1×2)=6+2错误!.12.在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,以下列图,求CP+PA1的最小值.解PA1在平面A1BC1内,PC在平面BCC1内,将其铺平后转变成平面上的问题解决.铺平平面A1BC1、平面BCC1,以下列图.计算A1B=AB1=错误!,BC1=2,又A1C1=6,故△A1BC1是∠A1C1B=90°的直角三角形.CP+PA1≥A1C。在△AC1C中,由余弦定理,得A1C=错误!=错误!=5错误!,学必求其心得,业必贵于专精故(CP+PA1)min=5错误!.13.某高速公路收费站入口处的安全表记墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该表记墩的主视图和俯视图.1)请画出该安全表记墩的左视图;(2)求该安全表记墩的体积.解(1)左视图同主视图,以下列图:2)该安全表记墩的体积为V=VPEFGH+VABCDEFGH22×20=错误!×40×60+4064000(cm3).14.如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,获取几何体D-ABC,如图(b)所示.学必求其心得,业必贵于专精(1)求证:BC⊥平面ACD;(2)求几何体D-ABC的体积.1)证明在图中,可得AC=BC=2错误!,从而AC2+BC2=AB2,故A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论