版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考数学真题分类汇编:二次函数(选择题)一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A. y=3x﹣1 B. y=ax2+bx+c C. s=2t2﹣2t+1 D. y=x2+2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.3.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A. B. C. D. 4.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A. B. C. D. 5.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A. B. C. D. 6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B. C. D. 7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2﹣1012…y…﹣11﹣21﹣2﹣5…由于粗心,他算错了其中一个y值,则这个错误的数值是()A. ﹣11 B. ﹣2 C. 1 D. ﹣58.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A. B. C. D. 9.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D. 10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D. 11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A. 1个 B. 2个 C. 3个 D. 4个12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A. (﹣1,2) B. (﹣1,﹣2) C. (1,﹣2) D. (1,2)13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 414.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A. 只能是x=﹣1B. 可能是y轴C. 在y轴右侧且在直线x=2的左侧D. 在y轴左侧且在直线x=﹣2的右侧15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A. 正比例函数 B. 一次函数 C. 反比例函数 D. 二次函数16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A. x=4 B. x=﹣4 C. x=2 D. x=﹣217.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A. m=﹣1 B. m=3 C. m≤﹣1 D. m≥﹣118.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A. a=b+2k B. a=b﹣2k C. k<b<0 D. a<k<019.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A. (1,0) B. (3,0) C. (﹣3,0) D. (0,﹣4)20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A. y=(x+2)2 B. y=2x2﹣2 C. y=﹣2x2﹣2 D. y=2(x﹣2)221.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A. m>1 B. m>0 C. m>﹣1 D. ﹣1<m<022.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A. 函数图象与y轴的交点坐标是(0,﹣3)B. 顶点坐标是(1,﹣3)C. 函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D. 当x<0时,y随x的增大而减小23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当﹣1<x<3时,y>0其中正确的个数为()A. 1 B. 2 C. 3 D. 424.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A. ②④ B. ①④ C. ①③ D. ②③25.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤26.(2015•毕节市)二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A. a<0 B. b>0 C. b2﹣4ac>0 D. a+b+c<027.(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A. 1 B. 2 C. 3 D. 428.(2015•南宁)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.正确的个数是()A. 0个 B. 1个 C. 2个 D. 3个29.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A. 4 B. 3 C. 2 D. 130.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A. 2 B. 3 C. 4 D. 5二.填空题(共21小题)1.(2015•常州)二次函数y=﹣x2+2x﹣3图象的顶点坐标是.2.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x时,y随x的增大而减小.3.(2015•杭州)函数y=x2+2x+1,当y=0时,x=;当1<x<2时,y随x的增大而(填写“增大”或“减小”).4.(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有个.5.(2015•淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式(要求:写出的解析式的对称轴不能相同).6.(2015•十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)7.(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)8.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.9.(2015•河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.10.(2015•乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是.11.(2015•宿迁)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为.12.(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.13.(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.14.(2015•绥化)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.15.(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.16.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.17.(2015•资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.18.(2015•营口)某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.19.(2015•温州)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.20.(2015•湖州)已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1,若该抛物线经过原点O,且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个,请直接写出a的取值范围.21.(2015•衢州)如图,已知直线y=﹣x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣x+3于点Q,则当PQ=BQ时,a的值是.答案与试题解析一.选择题(共30小题)1.(2015•兰州)下列函数解析式中,一定为二次函数的是()A. y=3x﹣1 B. y=ax2+bx+c C. s=2t2﹣2t+1 D. y=x2+考点: 二次函数的定义.分析: 根据二次函数的定义,可得答案.解答: 解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c(a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.点评: 本题考查了二次函数的定义,y=ax2+bx+c(a≠0)是二次函数,注意二次函数都是整式.2.(2015•宁夏)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D. 考点: 二次函数的图象;反比例函数的图象.专题: 压轴题;数形结合.分析: 本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答: 解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.点评: 本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.3.(2015•衢州)下列四个函数图象中,当x>0时,y随x的增大而减小的是()A. B. C. D. 考点: 二次函数的图象;一次函数的图象;反比例函数的图象.专题: 计算题.分析: 利用一次函数,二次函数,以及反比例函数的性质判断即可.解答: 解:当x>0时,y随x的增大而减小的是,故选B点评: 此题考查了二次函数的图象,一次函数的图象,以及反比例函数的图象,熟练掌握各自的图象与性质是解本题的关键.4.(2015•锦州)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A. B. C. D. 考点: 二次函数的图象;一次函数的图象.分析: 根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,2),二次函数的开口向上,据此判断二次函数的图象.解答: 解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.点评: 此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.5.(2015•湖北)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是()A. B. C. D. 考点: 二次函数的图象;一次函数的图象;反比例函数的图象.分析: 根据二次函数图象开口向下得到a<0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答: 解:∵二次函数图象开口方向向下,∴a<0,∵对称轴为直线x=﹣>0,∴b>0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一、二、四象限,反比例函数y=图象在第一三象限,只有C选项图象符合.故选C.点评: 本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B. C. D. 考点: 二次函数的图象;一次函数的图象.分析: 本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.解答: 解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.点评: 本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.7.(2015•泰安)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x … ﹣2 ﹣1 0 1 2 …y … ﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A. ﹣11 B. ﹣2 C. 1 D. ﹣5考点: 二次函数的图象.分析: 根据关于对称轴对称的自变量对应的函数值相等,可得答案.解答: 解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.点评: 本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.8.(2015•沈阳)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A. B. C. D. 考点: 二次函数的图象.分析: 根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.解答: 解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.点评: 本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.9.(2015•安徽)如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D. 考点: 二次函数的图象;正比例函数的图象.分析: 由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.解答: 解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,∵方程ax2+(b﹣1)x+c=0的两个不相等的根x1>0,x2>0,∴x1+x2=﹣>0,∴﹣>0,∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∵a>0,开口向上,∴A符合条件,故选A.点评: 本题考查了二次函数的图象,直线和抛物线的交点,交点坐标和方程的关系以及方程和二次函数的关系等,熟练掌握二次函数的性质是解题的关键.10.(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D. 考点: 二次函数的图象;一次函数的图象.分析: 首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解答: 解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴y=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.点评: 此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.11.(2015•咸宁)如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A. 1个 B. 2个 C. 3个 D. 4个考点: 二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).分析: ①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.解答: 解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.点评: 本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.12.(2015•新疆)抛物线y=(x﹣1)2+2的顶点坐标是()A. (﹣1,2) B. (﹣1,﹣2) C. (1,﹣2) D. (1,2)考点: 二次函数的性质.专题: 压轴题.分析: 直接利用顶点式的特点可写出顶点坐标.解答: 解:∵顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),∴抛物线y=(x﹣1)2+2的顶点坐标是(1,2).故选D.点评: 主要考查了求抛物线的顶点坐标、对称轴的方法.熟记二次函数的顶点式的形式是解题的关键.13.(2015•梅州)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A. 1 B. 2 C. 3 D. 4考点: 二次函数的性质.分析: 利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.解答: 解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.点评: 此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.14.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A. 只能是x=﹣1B. 可能是y轴C. 在y轴右侧且在直线x=2的左侧D. 在y轴左侧且在直线x=﹣2的右侧考点: 二次函数的性质.分析: 根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.解答: 解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴在y轴左侧且在直线x=﹣2的右侧.故选D.点评: 本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.15.(2015•福州)已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A. 正比例函数 B. 一次函数 C. 反比例函数 D. 二次函数考点: 二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析: 求出一次函数和反比例函数的解析式,根据其性质进行判断.解答: 解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=﹣4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.点评: 本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.16.(2015•甘孜州)二次函数y=x2+4x﹣5的图象的对称轴为()A. x=4 B. x=﹣4 C. x=2 D. x=﹣2考点: 二次函数的性质.分析: 直接利用抛物线的对称轴公式代入求出即可.解答: 解:二次函数y=x2+4x﹣5的图象的对称轴为:x=﹣=﹣=﹣2.故选:D.点评: 此题主要考查了二次函数的性质,正确记忆抛物线对称轴公式是解题关键.17.(2015•常州)已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A. m=﹣1 B. m=3 C. m≤﹣1 D. m≥﹣1考点: 二次函数的性质.分析: 根据二次函数的性质,利用二次函数的对称轴不大于1列式计算即可得解.解答: 解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,∴﹣≤1,解得m≥﹣1.故选D.点评: 本题考查了二次函数的性质,主要利用了二次函数的增减性,熟记性质并列出不等式是解题的关键.18.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A. a=b+2k B. a=b﹣2k C. k<b<0 D. a<k<0考点: 二次函数的性质;反比例函数图象上点的坐标特征.专题: 计算题.分析: 把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.解答: 解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.点评: 本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.19.(2015•台州)设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A. (1,0) B. (3,0) C. (﹣3,0) D. (0,﹣4)考点: 二次函数的性质.分析: 根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.解答: 解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.点评: 本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.20.(2015•兰州)在下列二次函数中,其图象对称轴为x=﹣2的是()A. y=(x+2)2 B. y=2x2﹣2 C. y=﹣2x2﹣2 D. y=2(x﹣2)2考点: 二次函数的性质.分析: 根据二次函数的性质求出各个函数的对称轴,选出正确的选项.解答: 解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.点评: 本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.21.(2015•益阳)若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A. m>1 B. m>0 C. m>﹣1 D. ﹣1<m<0考点: 二次函数的性质.分析: 利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.解答: 解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.点评: 本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.22.(2015•黔南州)二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A. 函数图象与y轴的交点坐标是(0,﹣3)B. 顶点坐标是(1,﹣3)C. 函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D. 当x<0时,y随x的增大而减小考点: 二次函数的性质;二次函数的图象.分析: A、将x=0代入y=x2﹣2x﹣3,求出y=﹣3,得出函数图象与y轴的交点坐标,即可判断;B、将一般式化为顶点式,求出顶点坐标,即可判断;C、将y=0代入y=x2﹣2x﹣3,求出x的值,得到函数图象与x轴的交点坐标,即可判断;D、利用二次函数的增减性即可判断.解答: 解:A、∵y=x2﹣2x﹣3,∴x=0时,y=﹣3,∴函数图象与y轴的交点坐标是(0,﹣3),故本选项说法正确;B、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点坐标是(1,﹣4),故本选项说法错误;C、∵y=x2﹣2x﹣3,∴y=0时,x2﹣2x﹣3=0,解得x=3或﹣1,∴函数图象与x轴的交点坐标是(3,0)、(﹣1,0),故本选项说法正确;D、∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴对称轴为直线x=1,又∵a=1>0,开口向上,∴x<1时,y随x的增大而减小,∴x<0时,y随x的增大而减小,故本选项说法正确;故选B.点评: 本题考查了二次函数的性质,抛物线与坐标轴的交点坐标,掌握二次函数的性质是解决本题的关键.23.(2015•安顺)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0②2a+b=0③a+b+c>0④当﹣1<x<3时,y>0其中正确的个数为()A. 1 B. 2 C. 3 D. 4考点: 二次函数图象与系数的关系.专题: 压轴题.分析: 由抛物线的开口方向判断a与0的关系,由x=1时的函数值判断a+b+c>0,然后根据对称轴推出2a+b与0的关系,根据图象判断﹣1<x<3时,y的符号.解答: 解:①图象开口向下,能得到a<0;②对称轴在y轴右侧,x==1,则有﹣=1,即2a+b=0;③当x=1时,y>0,则a+b+c>0;④由图可知,当﹣1<x<3时,y>0.故选C.点评: 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.24.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A. ②④ B. ①④ C. ①③ D. ②③考点: 二次函数图象与系数的关系.分析: 由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答: 解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:当x=﹣1时y>0,∴点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B点评: 此题考查二次函数的性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.25.(2015•日照)如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤考点: 二次函数图象与系数的关系;抛物线与x轴的交点.专题: 数形结合.分析: 根据抛物线对称轴方程对①进行判断;由抛物线开口方向得到a<0,由对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,于是可对②进行判断;根据顶点坐标对③进行判断;根据抛物线的对称性对④进行判断;根据函数图象得当1<x<4时,一次函数图象在抛物线下方,则可对⑤进行判断.解答: 解:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.点评: 本题考查了二次项系数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.26.(2015•毕节市)二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是()A. a<0 B. b>0 C. b2﹣4ac>0 D. a+b+c<0考点: 二次函数图象与系数的关系.专题: 计算题.分析: 根据抛物线的开口方向对A进行判断;根据抛物线的对称轴位置对B进行判断;根据抛物线与x轴的交点个数对C进行判断;根据自变量为1所对应的函数值为正数对D进行判断.解答: 解:A、抛物线开口向下,则a<0,所以A选项的关系式正确;B、抛物线的对称轴在y轴的右侧,a、b异号,则b>0,所以B选项的关系式正确;C、抛物线与x轴有2个交点,则△=b2﹣4ac>0,所以D选项的关系式正确;D、当x=1时,y>0,则a+b+c>0,所以D选项的关系式错误.故选D.点评: 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.27.(2015•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是()①a>0;②b>0;③c<0;④b2﹣4ac>0.A. 1 B. 2 C. 3 D. 4考点: 二次函数图象与系数的关系.专题: 数形结合.分析: 根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断.解答: 解:∵抛物线开口向下,∴a<0,所以①错误;∵抛物线的对称轴在y轴右侧,∴﹣>0,∴b>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,所以③错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以④正确.故选B.点评: 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.28.(2015•南宁)如图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,下列结论中:①ab>0,②a+b+c>0,③当﹣2<x<0时,y<0.正确的个数是()A. 0个 B. 1个 C. 2个 D. 3个考点: 二次函数图象与系数的关系.分析: ①由抛物线的开口向上,对称轴在y轴左侧,判断a,b与0的关系,得到ab>0;故①错误;②由x=1时,得到y=a+b+c>0;故②正确;③根据对称轴和抛物线与x轴的一个交点,得到另一个交点,然后根据图象确定答案即可.解答: 解:①∵抛物线的开口向上,∴a>0,∵对称轴在y轴的左侧,∴b>0∴ab>0;故①正确;②∵观察图象知;当x=1时y=a+b+c>0,∴②正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故③正确;故选D.点评: 本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.29.(2015•孝感)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴交于点C,且OA=OC.则下列结论:①abc<0;②>0;③ac﹣b+1=0;④OA•OB=﹣.其中正确结论的个数是()A. 4 B. 3 C. 2 D. 1考点: 二次函数图象与系数的关系.专题: 数形结合.分析: 由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解答: 解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.点评: 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.30.(2015•遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0,其中正确的个数是()A. 2 B. 3 C. 4 D. 5考点: 二次函数图象与系数的关系.分析: 由抛物线开口向下得到a<0,由对称轴在x=1的右侧得到﹣>1,于是利用不等式的性质得到2a+b>0;由a<0,对称轴在y轴的右侧,a与b异号,得到b>0,抛物线与y轴的交点在x轴的下方得到c<0,于是abc>0;抛物线与x轴有两个交点,所以△=b2﹣4ac>0;由x=1时,y>0,可得a+b+c>0;由x=﹣2时,y<0,可得4a﹣2b+c<0.解答: 解:①∵抛物线开口向下,∴a<0,∵对称轴x=﹣>1,∴2a+b>0,故①正确;②∵a<0,﹣>0,∴b>0,∵抛物线与y轴的交点在x轴的下方,∴c<0,∴abc>0,故②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④∵x=1时,y>0,∴a+b+c>0,故④错误;⑤∵x=﹣2时,y<0,∴4a﹣2b+c<0,故⑤正确.故选B.点评: 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,a<0,开口向下;对称轴为直线x=﹣,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c<0,抛物线与y轴的交点在x轴的下方;当△=b2﹣4ac>0,抛物线与x轴有两个交点.答案与试题解析一.填空题(共21小题)1.(2015•常州)二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).考点: 二次函数的性质.分析: 此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.解答: 解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).点评: 本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.2.(2015•漳州)已知二次函数y=(x﹣2)2+3,当x<2时,y随x的增大而减小.考点: 二次函数的性质.分析: 根据二次函数的性质,找到解析式中的a为1和对称轴;由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.解答: 解:在y=(x﹣2)2+3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小;当x>2时,y的值随着x的值增大而增大.故答案为:<2.点评: 本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.3.(2015•杭州)函数y=x2+2x+1,当y=0时,x=﹣1;当1<x<2时,y随x的增大而增大(填写“增大”或“减小”).考点: 二次函数的性质.分析: 将y=0代入y=x2+2x+1,求得x的值即可,根据函数开口向上,当x>﹣1时,y随x的增大而增大.解答: 解:把y=0代入y=x2+2x+1,得x2+2x+1=0,解得x=﹣1,当x>﹣1时,y随x的增大而增大,∴当1<x<2时,y随x的增大而增大;故答案为﹣1,增大.点评: 本题考查了二次函数的性质,重点掌握对称轴两侧的增减性问题,解此题的关键是利用数形结合的思想.4.(2015•天水)下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有3个.考点: 二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.分析: 分别根据正比例函数、一次函数、反比例函数和二次函数的性质进行分析即可.解答: 解:①y=(x>0),n>1,y的值随x的值增大而减小;②y=(n﹣1)x,n>1,y的值随x的值增大而增大;③y=(x>0)n>1,y的值随x的值增大而增大;④y=(1﹣n)x+1,n>1,y的值随x的值增大而减小;⑤y=﹣x2+2nx(x<0)中,n>1,y的值随x的值增大而增大;y的值随x的值增大而增大的函数有3个,故答案为:3.点评: 此题主要考查了正比例函数、一次函数、反比例函数和二次函数的性质,关键是掌握正比例函数y=kx(k≠0),k>0时,y的值随x的值增大而增大;一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;二次函数y=ax2+bx+c(a≠0)当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;反比例函数的性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.(2015•淄博)对于两个二次函数y1,y2,满足y1+y2=2x2+2x+8.当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3.请写出两个符合题意的二次函数y2的解析式y2=x2+3,y2=(x+)2+3(要求:写出的解析式的对称轴不能相同).考点: 二次函数的性质.专题: 开放型.分析: 已知当x=m时,二次函数y1的函数值为5,且二次函数y2有最小值3,故抛物线的顶点坐标为(m,3),设出顶点式求解即可.解答: 解:答案不唯一,例如:y2=x2+3,y2=(x+)2+3.故答案为:y2=x2+3,y2=(x+)2+3.点评: 考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).6.(2015•十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点: 二次函数图象与系数的关系.专题: 数形结合.分析: 根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a(m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.解答: 解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.点评: 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.7.(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)考点: 二次函数图象与系数的关系.分析: 根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.解答: 解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+2=﹣3a+4c,∵a<0,∴﹣3a>0,∴﹣3a+4c>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠1),∴a﹣b>m(am﹣b),所以⑤正确;故答案为:①③⑤.点评: 本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.8.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.考点: 二次函数图象上点的坐标特征;垂线段最短;矩形的性质.专题: 计算题.分析: 先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.解答: 解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.点评: 本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.9.(2015•河南)已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.考点: 二次函数图象上点的坐标特征.分析: 分别计算出自变量为4,和﹣2时的函数值,然后比较函数值得大小即可.解答: 解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.点评: 本题考查了二次函数图象上点的坐标特征,解题的关键是:明确二次函数图象上点的坐标满足其解析式.10.(2015•乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为(﹣1,2).(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,则实数a的取值范围是0≤a≤4.考点: 二次函数图象上点的坐标特征;一次函数图象上点的坐标特征.专题: 新定义.分析: (1)直接根据“可控变点”的定义直接得出答案;(2)根据题意可知y=﹣x2+16图象上的点P的“可控变点”必在函数y=的图象上,结合图象即可得到答案.解答: 解:(1)根据“可控变点”的定义可知点M的坐标为(﹣1,2);(2)依题意,y=﹣x2+16图象上的点P的“可控变点”必在函数y=的图象上.∵﹣16≤y′≤16,当y′=16时,16=﹣x2+16或﹣16=﹣x2+16.∴x=0或x=4.当y′=﹣16时,﹣16=﹣x2+16.∴x=4.∴a的取值范围是0≤a≤4.故答案为(﹣1,2),0≤a≤4.点评: 本题主要考查了二次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要掌握二次函数的性质,此题有一定的难度.11.(2015•宿迁)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为3.考点: 二次函数图象上点的坐标特征.分析: 设y=x2﹣2x+3由当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,得到抛物线的对称轴等于=﹣,求得m+n=2,再把m+n=2代入即可求得结果.解答: 解:设y=x2﹣2x+3,∵当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,∴=﹣,∴m+n=2,∴当x=m+n时,即x=2时,x2﹣2x+3=(2)2﹣2×(2)+3=3,故答案为:3.点评: 本题考查了二次函数图象上点的坐标特征,熟记抛物线的对称轴公式是解题的关键.12.(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2x2﹣4x﹣3.考点: 二次函数图象与几何变换.分析: 根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.解答: 解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.点评: 本题考查了二次函数图象与几何变换,利用了中心对称的性质.13.(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是y=﹣x2+2x和y=x2+2x.考点: 二次函数图象与几何变换.专题: 新定义.分析: 连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.解答: 解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x.点评: 此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.14.(2015•绥化)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为y=2(x+1)2﹣2.考点: 二次函数图象与几何变换.分析: 直接根据“上加下减,左加右减”的原则进行解答.解答: 解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.15.(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点: 二次函数图象与几何变换;二次函数图象与系数的关系.分析: ①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.解答: 解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评: (1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.(2)此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).16.(2015•莆田)用一根长为32cm的铁丝围成一个矩形,则围成矩形面积的最大值是64cm2.考点: 二次函数的最值.分析: 设矩形的一边长是xcm,则邻边的长是(16﹣x)cm,则矩形的面积S即可表示成x的函数,根据函数的性质即可求解.解答: 解:设矩形的一边长是xcm,则邻边的长是(16﹣x)cm.则矩形的面积S=x(16﹣x),即S=﹣x2+16x,当x=﹣=﹣=8时,S有最大值是:64.故答案是:64.点评: 本题考查了二次函数的性质,求最值得问题常用的思路是转化为函数问题,利用函数的性质求解.17.(2015•资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为y=x2﹣2x﹣3.考点: 抛物线与x轴的交点;二次函数的性质.专题: 新定义.分析: 先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.解答: 解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.点评: 本题考查了二次函数与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024三个小孩抚养权协议及共同财产分割合同6篇
- 2025年服装机械项目申请报告模板
- 2024-2025学年新疆维吾尔阿勒泰地区数学三上期末统考模拟试题含解析
- 2024-2025学年武功县数学三年级第一学期期末联考试题含解析
- 去工厂实习报告模板十篇
- 2024年消防喷淋安装施工总承包合同文件
- 超市的实习报告四篇
- 2025年伺服系统项目申请报告模稿
- 2025年咖啡机项目规划申请报告
- 2024年度水电供应专用合同合同一
- 英国自然风景式园林
- 医院转诊转院记录单
- 大件运输专业知识课件
- 国开电大财务管理学习活动第4章 腾讯公司融资案例分析参考答案
- UPS现场巡检维护保养记录表
- 空白教案模板(表格形式-已排版)
- 中药学第十九章活血化瘀药课件
- 99S203消防水泵接合器安装图集
- 实操考评表(模版)
- 桥梁的施工组织设计
- 消火栓试射试验记录
评论
0/150
提交评论