财务管理统计学第四章平均指标课件_第1页
财务管理统计学第四章平均指标课件_第2页
财务管理统计学第四章平均指标课件_第3页
财务管理统计学第四章平均指标课件_第4页
财务管理统计学第四章平均指标课件_第5页
已阅读5页,还剩139页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章平均指标与标志变异指标第一节平均指标第二节标志变异指标第三节偏度与峰度1第四章平均指标与标志变异指标第一节平均指标1基本要求:

平均指标和标志变异指标是进行统计描述的重要指标。通过本章的学习,要求学生深刻理解平均指标和变异指标的基本概念和分析方法;掌握各种平均指标的计算方法和运用原则以及几种平均数的关系,并能对平均指标进行分析;了解影响平均指标大小的因素;明确平均指标与标志变异指标的区别;掌握各种标志变异指标的计算方法,并能运用标志变异指标说明平均指标的代表性。2基本要求:2第一节平均指标一、平均指标概述二、数值平均数三、位置平均数3第一节平均指标一、平均指标概述3一、平均指标概述(一)含义反映社会经济现象总体各单位某一数量标志在一定时间、地点条件下所到达的一般水平的综合指标,概括地表明各种统计数列的基本数值特征,显示数列的一般水平或分布的集中趋势。4一、平均指标概述(一)含义4平均指标在统计中的作用1.可以消除因总体不同而带来的总体数量上的差异,从而使不同总体可以对比。2.可以对比现象在不同时间的一般水平的变化,反映现象发展变化的趋势及规律性。3.可以分析现象之间的依存关系。4.可以进行数量上的估计推断。5平均指标在统计中的作用5基本特点1.必须应用于同质总体2.是一种代表值,把总体单位数量标志值间的差异抽象化,反映总体分布的集中趋势3.说明一定历史条件下的一般水平4.以大量观察法为基础6基本特点6平均指标的种类㈠算术平均数㈡调和平均数㈢几何平均数㈣中位数㈤众数数值平均数位置平均数7平均指标的种类㈠算术平均数数值平均数位置平均数7二、数值平均数算术平均数调和平均数几何平均数8二、数值平均数算术平均数8基本形式:例:直接承担者※注意区分算术平均数与强度相对数算术平均数9基本形式:例:直接承担者※注意区分算术平均数与强度相对数算1.简单算术平均数——适用于总体资料未经分组整理、尚为原始资料的情况算术平均数的计算方法101.简单算术平均数——适用于总体资料未经分组整理、尚为原始平均年龄为:算术平均数的计算方法某小组共7人,其年龄分别为20、25、24、21、22、23、33(岁)【例】11平均年龄为:算术平均数的计算方法某小组共7人,其年龄分别为2.加权算术平均数——适用于总体资料经过分组整理形成变量数列的情况算术平均数的计算方法122.加权算术平均数——适用于总体资料经过分组整理形成变量数【例】某生产小组某日工人的日产量资料如下:日产量(件)x工人人数(人)fxf1011121314701003801501007001100456019501400合计8009710计算该小组该日全部工人的平均日产量。13【例】某生产小组某日工人的日产量资料如下:日产量(件)x工人若上述资料为组距数列,则应取各组的组中值作为该组的代表值用于计算;以组中值作为各组的代表值,假定各组标志值在组内分布是均匀的。所以求得的算术平均数只是其真值的近似值。说明14若上述资料为组距数列,则应取各组的组中值作为该2.某班同学英语考试成绩如下,计算其平均成绩

成绩分组(X)人数(f)

比重(%)组中值

Xf

60以下60—7070—8080—9090—10059158312.522.537.5207.555657585

952755851125680285合计

40

100—

2950

152.某班同学英语考试成绩如下,计算其平均成绩成绩分组(X)加权算术平均数的另一公式16加权算术平均数的另一公式16a)加权算术平均数受两个因素的影响,一个是分配数列中各组的标志值xi,另一个是各组标志值出现的次数fi或频率f/∑fb)各组标志值出现的次数在计算平均数的过程中起着权衡轻重的作用,故常将其称作“权数”。c)权数的形式:次数和频率权数尽管可以以绝对数或相对数的形式出现,但权数的实质是结构相对数。(3)权数的作用和形式17a)加权算术平均数受两个因素的影响,一个是分配数列中各组的标d)下列情况,分组资料可以不考虑权数,而用简单算术平均数。当各组的权数相同时。18d)下列情况,分组资料可以不考虑权数,而用简单算术平均数。1⒈变量值与其算术平均数的离差之和等于零,即:⒉变量值与其算术平均数的离差平方和为最小,即:算术平均数的主要数学性质19⒈变量值与其算术平均数的离差之和等于零,即:算术平均数的主要【例】

设X=(2,4,6,8),则其调和平均数可由定义计算如下:⒉再求算术平均数:⒈求各标志值的倒数:,,,⒊再求倒数:是总体各单位标志值倒数的算术平均数的倒数,又叫倒数平均数调和平均数20【例】设X=(2,4,6,8),则其调和平均数可由定义计算A.简单调和平均数——适用于总体资料未经分组整理、尚为原始资料的情况式中:为调和平均数;为变量值的个数;为第个变量值。调和平均数的计算方法21A.简单调和平均数——适用于总体资料未经分组整理、尚为原始B.加权调和平均数——适用于总体资料经过分组整理形成变量数列的情况式中:为第组的变量值;为第组的标志总量。22B.加权调和平均数——适用于总体资料经过分组整理形成变量数例:某工厂工人日产零件数资料:日产量(件)各组工人日总产量(件)Xm35556065707001650456019501470合计10330计算该企业该日全部工人的平均日产量。23例:某工厂工人日产零件数资料:日产量(件)各组工人日总产量(加权调和平均数可以作为算术平均数的变形使用。因为:24加权调和平均数可以作为算术平均数的变形使用。因为:24(三)几何平均数是n项标志值连乘积的n次方根

1.简单几何平均数:

应用:平均发展速度的计算2.加权几何平均数25(三)几何平均数2.加权几何平均数25【例1】某流水生产线有前后衔接的五道工序。某日各工序产品的合格率分别为95﹪、92﹪、90﹪、85﹪、80﹪,求整个流水生产线产品的平均合格率。26【例1】某流水生产线有前后衔接的五道工序。某日各工序产品的合【例2】某金融机构以复利计息。近12年来的年利率有4年为3﹪,2年为5﹪,2年为8﹪,3年为10﹪,1年为15﹪。求平均年利率。平均年利率为=106.85%-100%=6.85%27【例2】某金融机构以复利计息。近12年来的年利率有4年为3﹪(四)三者的关系算术平均数受极大值的影响较大,调和平均数受极小值的影响较大同一资料而言,其结果有如下关系:

28(四)三者的关系28三、位置平均数指总体中出现次数最多的变量值,用表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。众数29三、位置平均数指总体中出现次数最多的变量值,用表示,有时众数是一个合适的代表值

比如在服装行业中,生产商、批发商和零售商在做有关生产或存货的决策时,更感兴趣的是最普遍的尺寸而不是平均尺寸。

30有时众数是一个合适的代表值比如在服装行业中,生产商、批发商日产量(件)工人人数(人)101112131470100380150100合计800【例1】已知某企业某日工人的日产量资料如下:众数的确定1.单项数列计算该企业该日全部工人日产量的众数。31日产量(件)工人人数(人)1070合计800【例1】已知某企2.组距数列先确定众数组,然后计算:322.组距数列32例:上年某市80个中型工业企业资料33例:上年某市80个中型工业企业资料33当数据分布存在明显的集中趋势,且有显著的极端值时,适合使用众数;当数据分布的集中趋势不明显或存在两个以上分布中心时,不适合使用众数(前者无众数,后者为双众数或多众数,也等于没有众数)。众数的应用34当数据分布存在明显的集中趋势,且有显著的极端值时,适合使用众(二)中位数(Me)将总体各单位按其标志值大小顺序排列,处于中点位置那个单位的标志值,即为中位数。1.由未分组资料确定中位数。确定方法:首先将各总体单位的标志值,按照大小顺序排列,然后确定中位数的位置,处于中位数的位置的标志值就是中位数。35(二)中位数(Me)35(当n为奇数,中位数为处于中间位置的标志值)(当n为偶数,中位数为处于中间位置的两个标志值的平均数)例:(1)7个人的身高为:165.168、169、170、172.173、175cm,则中位数为:170cm(2)若8个人的身高为:165.168、169、170、172、173、175、179cm,则中位数为(170+172)/2,即171cm。36(当n为奇数,中位数为处于中间位置的标志值)(当n为偶数,中2.由单项式分组资料确定中位数。确定方法:单项式分组已经将资料序列化,这时总体单位数n=∑f,确定确定中位数的位置要通过累计次数计算。(当∑f为奇数)(当∑f为偶数)372.由单项式分组资料确定中位数。(当∑f为奇数)(当∑f为偶中位数例如,某工厂工人的日产量分配数列如下表。∑f=30为偶数38中位数例如,某工厂工人的383.由组距分组数列确定中位数(1)确定“中位数组”向上累计次数等于(2)假定中位数组内分布是均匀的,计算出中位数。393.由组距分组数列确定中位数39向上累计时向下累计时中位数计算公式40向上累计时向下累计时中位数计算公式40∴中位数组为“20-30”41∴中位数组为“20-30”41众数、中位数、算术平均数的关系当次数分布呈对称的钟分布时,三者相等;当次数右偏时,当次数左偏时,皮尔逊经验公式:42众数、中位数、算术平均数的关系42(三)其他分位数有四分位数、十分位数和百分位数意义:反映总体分布的位置特征,作为考察分布的集中趋势和变异状况的有效工具,尤其在强调“稳健性”和“耐饥性”等数据分析中有重要运用。43(三)其他分位数有四分位数、十分位数和百分位数43四分位数(Quartile):将全部总体单位按标志值大小等分为四部分的三个数值,分别记为Q1、Q2、Q3,分别叫做“下分位数”、“中位数”和“上分位数”。

44四分位数(Quartile):将全部总体单位按标志第二节标志变异指标一、标志变异指标概述二、极差与分位差三、平均差四、标准差与方差五、成数指标六、变异系数45第二节标志变异指标一、标志变异指标概述45语文数学英语总成绩平均成绩甲乙丙606555656565706575195195195656565某班三名同学三门课程的成绩如下:请比较三名同学学习成绩的差异。46语文数学英语总成绩平均成绩甲60657019565某班三名同一、标志变异指标的概述(一)概念:反映总体各单位标志值之间差异程度的综合指标。反映总体变量的分布特征、变动范围或离散程度。标志变异指标和平均指标是一对相互联系的对应指标,平均指标反映总体各单位标志值的集中趋势,而标志变异指标则是总体各单位标志值的离中趋势47一、标志变异指标的概述47用来衡量和比较平均数代表性的大小

变异指标值越大,平均指标的代表性越小;反之,平均指标的代表性越大用来反映社会经济活动过程的均衡性和稳定性(二)作用48用来衡量和比较平均数代表性的大小(二)作用48测定标志变异度的绝对量指标测定标志变异度的相对量指标全距平均差标准差全距系数平均差系数标准差系数标志变异指标的种类:49测定标志变异度的绝对量指标测定标志变异度的相对量指标全距平均(一)全距(极差)特点:优点:计算方法简单、易懂;缺点:易受极端数值的影响,不能全面反映所有标志值差异大小及分布状况,准确程度差往往应用于生产过程的质量控制50(一)全距(极差)优点:计算方法简单、易懂;往往应用于生产过(二)分位差是对全距指标的改进,从变量数列中剔除部分极端值后重新计算的类似于全距的指标,有四分位差等。四分位差:从总体分别中剔除最大和最小各1/4的单位,再对中间剩下的总体半数单位计算全距,称为“内四分位间距(Q.R)四分位差(QD)

51(二)分位差51三、平均差是总体各单位标志值与其算术平均数的离差绝对值的算术平均数,用A.D表示作用:平均差反映各标志值的差异程度,平均差越大,说明总体各标志值差异程度越大,平均数的代表性越小;平均差越小,说明各标志值差异程度越小,平均数的代表性越大。52三、平均差52公式:

53公式:53例如:假定某车间两个小组工人的月工资(元)资料如下。

甲:800,900,1000,1100,1200。

乙:900,950,1000,1050,1100。54例如:假定某车间两个小组工人的月工资(元)资料如下。

例:根据下列资料,计算平均差

按日产量(件)

工人数组中值

Xf

30—4040—5050—6060—70

1020155

35455565

350900825325

1306010585合计

50

2400

38055例:根据下列资料,计算平均差按日产量(件)工人数组中值X优点:不易受极端数值的影响,能综合反映全部单位标志值的实际差异程度;缺点:用绝对值的形式消除各标志值与算术平均数离差的正负值问题,不便于作数学处理和参与统计分析运算。平均差的特点56优点:不易受极端数值的影响,能综合反映全部单位标志值的实际差四、标准差与方差(一)标准差是各单位标志值与其算术平均数的离差平方的算术平均数的开平方根,用σ来表示57四、标准差与方差(一)标准差57仍用前面车间两小组工人月工资的例子:58仍用前面车间两小组工人月工资的例子:58按日产量分组(件)

工人数

组中值

Xf

30—4040—5050—6060—70

1020155

35455565

350900825325

16901807351620

合计

50

2400

4225

59按日产量分组(件)工人数组中值Xf30—401035(二)方差(σ2)用于抽样调查、相关分析及质量控制等(三)性质在总体分组的条件下,总方差可以分解为组内方差的平均数和组间方差两部分,即加法定理:60(二)方差(σ2)60五、成数指标分组单位数变量值具有某一属性不具有某一属性N1N010合计N—为研究是非标志总体的数量特征,令指总体中全部单位只具有“是”或“否”、“有”或“无”两种表现形式的标志,又叫交替标志是非标志61五、成数指标分组单位数变量值具有某一属性N11合计N—具有某种标志表现的单位数所占的成数不具有某种标志表现的单位数所占的成数指是非标志总体中具有某种表现或不具有某种表现的单位数占全部总体单位总数的比重成数62具有某种标志表现的不具有某种标志表现指是非标志总体中具有某种均值标准差63均标63平均差系数标准差系数六、变异系数用来对比不同水平的同类现象,或者是不同类现象总体平均数代表性的大小:——标准差系数小的总体,其平均数的代表性大;反之,亦然。应用:64平均差系数标准差系数六、变异系数用来对比不同水平的同类现象,【例】某年级一、二两班某门课的平均成绩分别为82分和76分,其成绩的标准差分别为15.6分和14.8分,比较两班平均成绩代表性的大小。解:一班成绩的标准差系数为:二班成绩的标准差系数为:因为所以一班平均成绩的代表性比二班好。65【例】某年级一、二两班某门课的平均成绩分别为82分和76分,第三节偏度与峰度一、矩及测度矩:又叫动差,用来描述分布的特征(一)矩的基本形式66第三节偏度与峰度一、矩及测度66(二)原点矩显然,一阶原点矩是变量的算术平均数,二阶原点矩是变量平方的算术平均数67(二)原点矩67(三)中心矩显然,任何分布的一阶中心矩永远等于零,二阶中心矩就是分布的方差68(三)中心矩68二、偏度及测度1.含义:是反映变量数列偏斜程度的指标,即指分布不对称的方向和程度。单峰分布对称分布非对称分布左偏态右偏态69二、偏度及测度单峰分布对称分布非对称分布左偏态右偏态692.偏度系数SK通常取值在-3~+3之间,其绝对值大,则偏斜程度大,反之,亦然。当分布呈右偏时,SK﹥0;当分布呈左偏时,SK﹤0;若SK=0,则为对称分布。702.偏度系数70三、峰度

峰度是用于衡量分布的集中程度或分布曲线的尖峭或扁平程度的指标。

峰度指标β的计算公式:判断标准(都是与相同标准差的正态分布比较):β﹥0,高峰度分布=0,正态分布﹤0,低峰度分布71三、峰度

峰度是用于衡量分布的集中程度或分布曲线的尖

当峰度指标β>0时,表示分布比正态分布更集中在平均数周围,分布呈尖峰状态;β=0分布为正态分布;β<0时,表示分布比正态分布更分散,分布呈低峰态,如下图所示:72当峰度指标β>0时,表示分布比正态分布更集中在平均数周围第四章平均指标与标志变异指标第一节平均指标第二节标志变异指标第三节偏度与峰度73第四章平均指标与标志变异指标第一节平均指标1基本要求:

平均指标和标志变异指标是进行统计描述的重要指标。通过本章的学习,要求学生深刻理解平均指标和变异指标的基本概念和分析方法;掌握各种平均指标的计算方法和运用原则以及几种平均数的关系,并能对平均指标进行分析;了解影响平均指标大小的因素;明确平均指标与标志变异指标的区别;掌握各种标志变异指标的计算方法,并能运用标志变异指标说明平均指标的代表性。74基本要求:2第一节平均指标一、平均指标概述二、数值平均数三、位置平均数75第一节平均指标一、平均指标概述3一、平均指标概述(一)含义反映社会经济现象总体各单位某一数量标志在一定时间、地点条件下所到达的一般水平的综合指标,概括地表明各种统计数列的基本数值特征,显示数列的一般水平或分布的集中趋势。76一、平均指标概述(一)含义4平均指标在统计中的作用1.可以消除因总体不同而带来的总体数量上的差异,从而使不同总体可以对比。2.可以对比现象在不同时间的一般水平的变化,反映现象发展变化的趋势及规律性。3.可以分析现象之间的依存关系。4.可以进行数量上的估计推断。77平均指标在统计中的作用5基本特点1.必须应用于同质总体2.是一种代表值,把总体单位数量标志值间的差异抽象化,反映总体分布的集中趋势3.说明一定历史条件下的一般水平4.以大量观察法为基础78基本特点6平均指标的种类㈠算术平均数㈡调和平均数㈢几何平均数㈣中位数㈤众数数值平均数位置平均数79平均指标的种类㈠算术平均数数值平均数位置平均数7二、数值平均数算术平均数调和平均数几何平均数80二、数值平均数算术平均数8基本形式:例:直接承担者※注意区分算术平均数与强度相对数算术平均数81基本形式:例:直接承担者※注意区分算术平均数与强度相对数算1.简单算术平均数——适用于总体资料未经分组整理、尚为原始资料的情况算术平均数的计算方法821.简单算术平均数——适用于总体资料未经分组整理、尚为原始平均年龄为:算术平均数的计算方法某小组共7人,其年龄分别为20、25、24、21、22、23、33(岁)【例】83平均年龄为:算术平均数的计算方法某小组共7人,其年龄分别为2.加权算术平均数——适用于总体资料经过分组整理形成变量数列的情况算术平均数的计算方法842.加权算术平均数——适用于总体资料经过分组整理形成变量数【例】某生产小组某日工人的日产量资料如下:日产量(件)x工人人数(人)fxf1011121314701003801501007001100456019501400合计8009710计算该小组该日全部工人的平均日产量。85【例】某生产小组某日工人的日产量资料如下:日产量(件)x工人若上述资料为组距数列,则应取各组的组中值作为该组的代表值用于计算;以组中值作为各组的代表值,假定各组标志值在组内分布是均匀的。所以求得的算术平均数只是其真值的近似值。说明86若上述资料为组距数列,则应取各组的组中值作为该2.某班同学英语考试成绩如下,计算其平均成绩

成绩分组(X)人数(f)

比重(%)组中值

Xf

60以下60—7070—8080—9090—10059158312.522.537.5207.555657585

952755851125680285合计

40

100—

2950

872.某班同学英语考试成绩如下,计算其平均成绩成绩分组(X)加权算术平均数的另一公式88加权算术平均数的另一公式16a)加权算术平均数受两个因素的影响,一个是分配数列中各组的标志值xi,另一个是各组标志值出现的次数fi或频率f/∑fb)各组标志值出现的次数在计算平均数的过程中起着权衡轻重的作用,故常将其称作“权数”。c)权数的形式:次数和频率权数尽管可以以绝对数或相对数的形式出现,但权数的实质是结构相对数。(3)权数的作用和形式89a)加权算术平均数受两个因素的影响,一个是分配数列中各组的标d)下列情况,分组资料可以不考虑权数,而用简单算术平均数。当各组的权数相同时。90d)下列情况,分组资料可以不考虑权数,而用简单算术平均数。1⒈变量值与其算术平均数的离差之和等于零,即:⒉变量值与其算术平均数的离差平方和为最小,即:算术平均数的主要数学性质91⒈变量值与其算术平均数的离差之和等于零,即:算术平均数的主要【例】

设X=(2,4,6,8),则其调和平均数可由定义计算如下:⒉再求算术平均数:⒈求各标志值的倒数:,,,⒊再求倒数:是总体各单位标志值倒数的算术平均数的倒数,又叫倒数平均数调和平均数92【例】设X=(2,4,6,8),则其调和平均数可由定义计算A.简单调和平均数——适用于总体资料未经分组整理、尚为原始资料的情况式中:为调和平均数;为变量值的个数;为第个变量值。调和平均数的计算方法93A.简单调和平均数——适用于总体资料未经分组整理、尚为原始B.加权调和平均数——适用于总体资料经过分组整理形成变量数列的情况式中:为第组的变量值;为第组的标志总量。94B.加权调和平均数——适用于总体资料经过分组整理形成变量数例:某工厂工人日产零件数资料:日产量(件)各组工人日总产量(件)Xm35556065707001650456019501470合计10330计算该企业该日全部工人的平均日产量。95例:某工厂工人日产零件数资料:日产量(件)各组工人日总产量(加权调和平均数可以作为算术平均数的变形使用。因为:96加权调和平均数可以作为算术平均数的变形使用。因为:24(三)几何平均数是n项标志值连乘积的n次方根

1.简单几何平均数:

应用:平均发展速度的计算2.加权几何平均数97(三)几何平均数2.加权几何平均数25【例1】某流水生产线有前后衔接的五道工序。某日各工序产品的合格率分别为95﹪、92﹪、90﹪、85﹪、80﹪,求整个流水生产线产品的平均合格率。98【例1】某流水生产线有前后衔接的五道工序。某日各工序产品的合【例2】某金融机构以复利计息。近12年来的年利率有4年为3﹪,2年为5﹪,2年为8﹪,3年为10﹪,1年为15﹪。求平均年利率。平均年利率为=106.85%-100%=6.85%99【例2】某金融机构以复利计息。近12年来的年利率有4年为3﹪(四)三者的关系算术平均数受极大值的影响较大,调和平均数受极小值的影响较大同一资料而言,其结果有如下关系:

100(四)三者的关系28三、位置平均数指总体中出现次数最多的变量值,用表示,它不受极端数值的影响,用来说明总体中大多数单位所达到的一般水平。众数101三、位置平均数指总体中出现次数最多的变量值,用表示,有时众数是一个合适的代表值

比如在服装行业中,生产商、批发商和零售商在做有关生产或存货的决策时,更感兴趣的是最普遍的尺寸而不是平均尺寸。

102有时众数是一个合适的代表值比如在服装行业中,生产商、批发商日产量(件)工人人数(人)101112131470100380150100合计800【例1】已知某企业某日工人的日产量资料如下:众数的确定1.单项数列计算该企业该日全部工人日产量的众数。103日产量(件)工人人数(人)1070合计800【例1】已知某企2.组距数列先确定众数组,然后计算:1042.组距数列32例:上年某市80个中型工业企业资料105例:上年某市80个中型工业企业资料33当数据分布存在明显的集中趋势,且有显著的极端值时,适合使用众数;当数据分布的集中趋势不明显或存在两个以上分布中心时,不适合使用众数(前者无众数,后者为双众数或多众数,也等于没有众数)。众数的应用106当数据分布存在明显的集中趋势,且有显著的极端值时,适合使用众(二)中位数(Me)将总体各单位按其标志值大小顺序排列,处于中点位置那个单位的标志值,即为中位数。1.由未分组资料确定中位数。确定方法:首先将各总体单位的标志值,按照大小顺序排列,然后确定中位数的位置,处于中位数的位置的标志值就是中位数。107(二)中位数(Me)35(当n为奇数,中位数为处于中间位置的标志值)(当n为偶数,中位数为处于中间位置的两个标志值的平均数)例:(1)7个人的身高为:165.168、169、170、172.173、175cm,则中位数为:170cm(2)若8个人的身高为:165.168、169、170、172、173、175、179cm,则中位数为(170+172)/2,即171cm。108(当n为奇数,中位数为处于中间位置的标志值)(当n为偶数,中2.由单项式分组资料确定中位数。确定方法:单项式分组已经将资料序列化,这时总体单位数n=∑f,确定确定中位数的位置要通过累计次数计算。(当∑f为奇数)(当∑f为偶数)1092.由单项式分组资料确定中位数。(当∑f为奇数)(当∑f为偶中位数例如,某工厂工人的日产量分配数列如下表。∑f=30为偶数110中位数例如,某工厂工人的383.由组距分组数列确定中位数(1)确定“中位数组”向上累计次数等于(2)假定中位数组内分布是均匀的,计算出中位数。1113.由组距分组数列确定中位数39向上累计时向下累计时中位数计算公式112向上累计时向下累计时中位数计算公式40∴中位数组为“20-30”113∴中位数组为“20-30”41众数、中位数、算术平均数的关系当次数分布呈对称的钟分布时,三者相等;当次数右偏时,当次数左偏时,皮尔逊经验公式:114众数、中位数、算术平均数的关系42(三)其他分位数有四分位数、十分位数和百分位数意义:反映总体分布的位置特征,作为考察分布的集中趋势和变异状况的有效工具,尤其在强调“稳健性”和“耐饥性”等数据分析中有重要运用。115(三)其他分位数有四分位数、十分位数和百分位数43四分位数(Quartile):将全部总体单位按标志值大小等分为四部分的三个数值,分别记为Q1、Q2、Q3,分别叫做“下分位数”、“中位数”和“上分位数”。

116四分位数(Quartile):将全部总体单位按标志第二节标志变异指标一、标志变异指标概述二、极差与分位差三、平均差四、标准差与方差五、成数指标六、变异系数117第二节标志变异指标一、标志变异指标概述45语文数学英语总成绩平均成绩甲乙丙606555656565706575195195195656565某班三名同学三门课程的成绩如下:请比较三名同学学习成绩的差异。118语文数学英语总成绩平均成绩甲60657019565某班三名同一、标志变异指标的概述(一)概念:反映总体各单位标志值之间差异程度的综合指标。反映总体变量的分布特征、变动范围或离散程度。标志变异指标和平均指标是一对相互联系的对应指标,平均指标反映总体各单位标志值的集中趋势,而标志变异指标则是总体各单位标志值的离中趋势119一、标志变异指标的概述47用来衡量和比较平均数代表性的大小

变异指标值越大,平均指标的代表性越小;反之,平均指标的代表性越大用来反映社会经济活动过程的均衡性和稳定性(二)作用120用来衡量和比较平均数代表性的大小(二)作用48测定标志变异度的绝对量指标测定标志变异度的相对量指标全距平均差标准差全距系数平均差系数标准差系数标志变异指标的种类:121测定标志变异度的绝对量指标测定标志变异度的相对量指标全距平均(一)全距(极差)特点:优点:计算方法简单、易懂;缺点:易受极端数值的影响,不能全面反映所有标志值差异大小及分布状况,准确程度差往往应用于生产过程的质量控制122(一)全距(极差)优点:计算方法简单、易懂;往往应用于生产过(二)分位差是对全距指标的改进,从变量数列中剔除部分极端值后重新计算的类似于全距的指标,有四分位差等。四分位差:从总体分别中剔除最大和最小各1/4的单位,再对中间剩下的总体半数单位计算全距,称为“内四分位间距(Q.R)四分位差(QD)

123(二)分位差51三、平均差是总体各单位标志值与其算术平均数的离差绝对值的算术平均数,用A.D表示作用:平均差反映各标志值的差异程度,平均差越大,说明总体各标志值差异程度越大,平均数的代表性越小;平均差越小,说明各标志值差异程度越小,平均数的代表性越大。124三、平均差52公式:

125公式:53例如:假定某车间两个小组工人的月工资(元)资料如下。

甲:800,900,1000,1100,1200。

乙:900,950,1000,1050,1100。126例如:假定某车间两个小组工人的月工资(元)资料如下。

例:根据下列资料,计算平均差

按日产量(件)

工人数组中值

Xf

30—4040—5050—6060—70

1020155

35455565

350900825325

1306010585合计

50

2400

380127例:根据下列资料,计算平均差按日产量(件)工人数组中值X优点:不易受极端数值的影响,能综合反映全部单位标志值的实际差异程度;缺点:用绝对值的形式消除各标志值与算术平均数离差的正负值问题,不便于作数学处理和参与统计分析运算。平均差的特点128优点:不易受极端数值的影响,能综合反映全部单位标志值的实际差四、标准差与方差(一)标准差是各单位标志值与其算术平均数的离差平方的算术平均数的开平方根,用σ来表示129四、标准差与方差(一)标准差

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论