2021-2022学年上海市徐汇区重点达标名校中考数学考试模拟冲刺卷含解析_第1页
2021-2022学年上海市徐汇区重点达标名校中考数学考试模拟冲刺卷含解析_第2页
2021-2022学年上海市徐汇区重点达标名校中考数学考试模拟冲刺卷含解析_第3页
2021-2022学年上海市徐汇区重点达标名校中考数学考试模拟冲刺卷含解析_第4页
2021-2022学年上海市徐汇区重点达标名校中考数学考试模拟冲刺卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x2 B.y=x﹣1 C. D.2.某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是().A. B. C. D.3.如图,在半径为5的⊙O中,弦AB=6,点C是优弧上一点(不与A,B重合),则cosC的值为()A. B. C. D.4.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68° B.20° C.28° D.22°5.如图,点D在△ABC的边AC上,要判断△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.6.下列计算正确的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣67.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>28.多项式ax2﹣4ax﹣12a因式分解正确的是()A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)9.下列各数中,为无理数的是()A. B. C. D.10.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)二、填空题(本大题共6个小题,每小题3分,共18分)11.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.12.若一个多边形的每一个外角都等于40°,则这个多边形的内角和是_____.13.如图,A、B、C是⊙O上的三点,若∠C=30°,OA=3,则弧AB的长为______.(结果保留π)14.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).15.如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是______.16.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH⊥AB于H,连接OH,则∠DHO=_____度.三、解答题(共8题,共72分)17.(8分)如图,在等边三角形ABC中,点D,E分别在BC,AB上,且∠ADE=60°.求证:△ADC~△DEB.18.(8分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为a%,三月底可使用的自行车达到7752辆,求a的值.19.(8分)已知函数的图象与函数的图象交于点.(1)若,求的值和点P的坐标;(2)当时,结合函数图象,直接写出实数的取值范围.20.(8分)如图,在矩形ABCD中,E是BC边上的点,,垂足为F.(1)求证:;(2)如果,求的余切值.21.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.22.(10分)某初中学校组织200位同学参加义务植树活动.甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表1和表2:表1:甲调查九年级30位同学植树情况每人植树棵数78910人数36156表2:乙调查三个年级各10位同学植树情况每人植树棵数678910人数363126根据以上材料回答下列问题:(1)关于于植树棵数,表1中的中位数是棵;表2中的众数是棵;(2)你认为同学(填“甲”或“乙”)所抽取的样本能更好反映此次植树活动情况;(3)在问题(2)的基础上估计本次活动200位同学一共植树多少棵?23.(12分)已知顶点为A的抛物线y=a(x-)2-2经过点B(-,2),点C(,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.24.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).根据上述信息,解答下列各题:×(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确2、B【解析】

先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.3、D【解析】解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD==8,∴cosD===.∵∠C=∠D,∴cosC=.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.4、D【解析】试题解析:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故选D.5、C【解析】

由∠A是公共角,利用有两角对应相等的三角形相似,即可得A与B正确;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D正确,继而求得答案,注意排除法在解选择题中的应用.【详解】∵∠A是公共角,∴当∠ABD=∠C或∠ADB=∠ABC时,△ADB∽△ABC(有两角对应相等的三角形相似),故A与B正确,不符合题意要求;当AB:AD=AC:AB时,△ADB∽△ABC(两组对应边的比相等且夹角对应相等的两个三角形相似),故D正确,不符合题意要求;AB:BD=CB:AC时,∠A不是夹角,故不能判定△ADB与△ABC相似,故C错误,符合题意要求,故选C.6、C【解析】

分别根据二次根式的定义,乘方的意义,负指数幂的意义以及绝对值的定义解答即可.【详解】=3,故选项A不合题意;﹣32=﹣9,故选项B不合题意;(﹣3)﹣2=,故选项C符合题意;﹣3+|﹣3|=﹣3+3=0,故选项D不合题意.故选C.【点睛】本题主要考查了二次根式的定义,乘方的定义、负指数幂的意义以及绝对值的定义,熟记定义是解答本题的关键.7、D【解析】

先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,

∴A、B两点关于原点对称,

∵点A的横坐标为1,∴点B的横坐标为-1,

∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,

∴当y1>y1时,x的取值范围是-1<x<0或x>1.

故选:D.【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.8、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案为a(x﹣6)(x+2).点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.9、D【解析】A.=2,是有理数;B.=2,是有理数;C.,是有理数;D.,是无理数,故选D.10、D【解析】

试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为,∴点A的对应点A′的坐标是(―3×,6×),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.12、【解析】

根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9,

则内角和是:(9-2)•180°=1260°.

故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.13、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的长为.14、24+24【解析】

仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.【详解】解:观察图形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.故答案为24+24.【点睛】此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.15、【解析】解:过点C作CP⊥直线AB于点P,过点P作⊙C的切线PQ,切点为Q,此时PQ最小,连接CQ,如图所示.当x=0时,y=3,∴点B的坐标为(0,3);当y=0时,x=4,∴点A的坐标为(4,0),∴OA=4,OB=3,∴AB==5,∴sinB=.∵C(0,﹣1),∴BC=3﹣(﹣1)=4,∴CP=BC•sinB=.∵PQ为⊙C的切线,∴在Rt△CQP中,CQ=1,∠CQP=90°,∴PQ==.故答案为.16、1.【解析】试题分析:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=×50°=1°.考点:菱形的性质.三、解答题(共8题,共72分)17、见解析【解析】

根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.【详解】证明:ABC是等边三角形,∴∠B=∠C=60°,∴∠ADB=∠CAD+∠C=∠CAD+60°,∵∠ADE=60°,∴∠ADB=∠BDE+60°,∴∠CAD=∠BDE,∴【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.18、(1)7000辆;(2)a的值是1.【解析】

(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.19、(1),,或;(2).【解析】【分析】(1)将P(m,n)代入y=kx,再结合m=2n即可求得k的值,联立y=与y=kx组成方程组,解方程组即可求得点P的坐标;(2)画出两个函数的图象,观察函数的图象即可得.【详解】(1)∵函数的图象交于点,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直线解析式为:y=x,解方程组,得,,∴交点P的坐标为:(,)或(-,-);(2)由题意画出函数的图象与函数的图象如图所示,∵函数的图象与函数的交点P的坐标为(m,n),∴当k=1时,P的坐标为(1,1)或(-1,-1),此时|m|=|n|,当k>1时,结合图象可知此时|m|<|n|,∴当时,≥1.【点睛】本题考查了反比例函数与正比例函数的交点,待定系数法等,运用数形结合思想解题是关键.20、(1)见解析;(2).【解析】

(1)矩形的性质得到,得到,根据定理证明;(2)根据全等三角形的性质、勾股定理、余切的定义计算即可.【详解】解:(1)证明:四边形是矩形,,,在和中,,,;(2),,设,,,,,,,,.【点睛】本题考查的是矩形的性质、勾股定理的运用、全等三角形的判定和性质以及余切的定义,掌握全等三角形的判定定理和性质定理是解题的关键.21、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.【解析】

(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得【详解】(1)∵四边形ABCD为矩形,∴BC=AD=5,∵BE∶CE=3∶2,则BE=3,CE=2,∴AE===5.(2)如图1,当点P在线段AB上运动时,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,则EF=AE-AF=5-t,即y=5-t(0≤t≤4);如图2,当点P在射线AB上运动时,即t>4,此时,EF=AF-AE=t-5,即y=t-5(t>4);综上,;(3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:①当t=0或t=4时,显然符合条件的⊙F不存在;②当0<t<4时,如解图1,作FG⊥BC于点G,则FG=BP=4-t,∵PF∥BC,∴△APF∽△ABE,∴=,即=,∴PF=t,由4-t=t可得t=,则此时⊙F的半径PF=;③当t>4时,如解图2,同理可得FG=t-4,PF=t,由t-4=t可得t=16,则此时⊙F的半径PF=12.【点睛】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.22、(1)9,9;(2)乙;(3)1680棵;【解析】

(1)根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案;(2)根据样本要具有代表性可得乙同学抽取的样本比较有代表性;(3)利用样本估计总体的方法计算即可.【详解】(1)表1中30位同学植树情况的中位数是9棵,表2中的众数是9棵;故答案为:9,9;(2)乙同学所抽取的样本能更好反映此次植树活动情况;故答案为:乙;(3)由题意可得:(3×6+6×7+3×8+12×9+6×10)÷30×200=1680(棵),答:本次活动200位同学一共植树1680棵.【点睛】本题考查了抽样调查,以及中位数,解题的关键是掌握中位数定义及抽样调查抽取的样本要具有代表性.23、(1)y=(x-)2-2;(2)△POE的面积为或;(3)点Q的坐标为(-,)或(-,2)或(,2).【解析】

(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得===,即OP=FA,设点P(t,-2t-1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-,2)代入y=a(x-)2-2,解得a=1,∴抛物线的表达式为y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得,解得,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,设点P(t,-2t-1),则,解得t1=-,t2=-,由对称性知,当t1=-时,也满足∠OPM=∠MAF,∴t1=-,t2=-都满足条件,∵△POE的面积=OE·|t|,∴△POE的面积为或;(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,设Q(a,-2a-1),则NE=-a,QN=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论