版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RevenueManagement
andDynamicPricing:
PartIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@RevenueManagement
andDynamicOutlineConceptExampleComponentsReal-TimeTransactionProcessingExtracting,Transforming,andLoadingDataForecastingOptimizationDecisionSupportNon-TraditionalApplicationsFurtherReadingandSpecialInterestGroupsOutlineConceptRevenueManagement
andDynamicPricingRevenueManagementinConceptRevenueManagement
andDynamicWhatisRevenueManagement?BeganintheairlineindustrySeatsonanaircraftdividedintodifferentproductsbasedondifferentrestrictions$1000Yclassproduct:canbepurchasedatanytime,norestrictions,fullyrefundable$200Qclassproduct:Requires3weekadvancedpurchase,Saturdaynightstay,penaltiesforchangingticketafterpurchaseQuestion:Howmuchinventorytomakeavailableineachclassateachpointinthesalescycle?WhatisRevenueManagement?BegWhatisRevenueManagement?RevenueManagement:ThescienceofmaximizingprofitsthroughmarketdemandforecastingandthemathematicaloptimizationofpricingandinventoryRelatednames:YieldManagement(original)RevenueOptimizationDemandManagementDemandChainManagementWhatisRevenueManagement?RevRudimentsStrategic/Tactical:MarketingMarketsegmentationProductdefinitionPricingframeworkDistributionstrategyOperational:RevenueManagementForecastingdemandbywillingness-to-payDynamicchangestopriceandavailableinventoryRudimentsStrategic/Tactical:IndustryPopularityWasbornofabusinessproblemandspeakstoabusinessproblemAddressestherevenuesideoftheequation,notthecostside2–10%revenueimprovementscommonIndustryPopularityWasbornofIndustryAccolades“Nowwecanbealotsmarter.Revenuemanagementisallofourprofit,andmore.” BillBrunger,VicePresidentContinentalAirlines“PROSproductshavebeenakeyfactorinSouthwest'sprofitperformance.”KeithTaylor,VicePresidentSouthwestAirlinesIndustryAccolades“NowwecanAnalystAccolades“RevenuePricingOptimizationrepresentthenextwaveofsoftwareascompaniesseektoleveragetheirERPandCRMsolutions.”–ScottPhillips,MerrillLynch“Oneofthemostexcitinginevitabilitiesaheadis‘yieldmanagement.’”–BobAustrian,BancofAmericaSecurities“RevenueOptimizationwillbecomeacompetitivestrategyinnearlyallindustries.”–AMRResearchAnalystAccolades“RevenuePricAcademicAccolades“Anareaofparticularinteresttooperationsresearchexpertstoday,accordingtoTrick,isrevenuemanagement.”InformationWeek,July12,2002.Dr.TrickisaProfessoratCMU
andPresidentofINFORMS.AcademicAccolades“AnareaofAcademicAccoladesAswemoveintoanewmillennium,dynamicpricinghasbecometherule.“Yieldmanagement,”saysMr.Varian,“iswhereit’sat.”“ToHalVarianthePriceisAlwaysRight,”strategy+business,Q12000.Dr.VarianisDeanoftheSchoolofInformationManagementandSystemsatUCBerkeley,andwasrecentlynamedoneofthe25mostinfluentialpeopleineBusinessbyBusinessWeek(May14,2001)AcademicAccoladesAswemoveiApplicationAreasTraditionalAirlineHotelExtendedStayHotelCarRentalRailTourOperatorsCargoCruiseNon-TraditionalEnergyBroadcastHealthcareManufacturingApparelRestaurantsGolfMore…ApplicationAreasTraditionalNoDynamicPricingThedistinctionbetweenrevenuemanagementanddynamicpricingisnotaltogetherclearArefareclassesdifferentproducts,ordifferentpricesforthesameproduct?RevenuemanagementtendstofocusoninventoryavailabilityratherthanpriceRealityisthatrevenuemanagementanddynamicpricingareinextricablylinkedDynamicPricingThedistinctionTraditionalRevenueManagementNon-traditionalrevenuemanagementanddynamicpricingapplicationareashavenotevolvedtothepointofstandardindustrypracticesTraditionalrevenuemanagementhas,andwefocusprimarilyontraditionalapplicationsinthispresentationTraditionalRevenueManagementRevenueManagement
andDynamicPricingManagingAirlineInventoryRevenueManagement
andDynamicAirlineInventoryAmid-sizecarriermighthave1000dailydepartureswithanaverageof200seatsperflightlegEWRSEALAXIAHATLORDAirlineInventoryAmid-sizecaAirlineInventory200seatsperflightleg200x1000=200,000seatspernetworkday365networkdaysmaintainedininventory365x200,000=73millionseatsininventoryatanygiventimeThemechanicsofmanagingfinalinventoryrepresentsachallengesimplyduetovolumeAirlineInventory200seatsperAirlineInventoryRevenuemanagementprovidesanalyticalcapabilitiesthatdriverevenuemaximizingdecisionsonwhatinventoryshouldbesoldandatwhatpriceForecastingtodeterminedemandanditswillingness-to-payEstablishinganoptimalmixoffareproductsAirlineInventoryRevenuemanagFareProductMixShoulda$1200SEA-IAH-ATLMclassitinerarybeavailable?A$2000Yclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$1200FareProductMixShoulda$600IAH-ATL-EWRBclassitinerarybeavailable?An$800Mclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$600FareProductMixOptimizationputsinplaceinventorycontrolsthatallowthehighestpayingcollectionofcustomerstobechosenWhenitmakeseconomicsense,fareclasseswillbeclosedsoastosaveroomforhigherpayingcustomersthatareyettocomeFareProductMixOptimizationpRevenueManagement
andDynamicPricingComponentsRevenueManagement
andDynamicTheReal-TimeTransactionProcessorRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheReal-TimeTransactionProcTheRevenueManagementSystemRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheRevenueManagementSystemRAnalystsRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportAnalystsRevenueManagementSysTheRevenueManagementProcessRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportTheRevenueManagementProcessReal-TimeTransactionProcessorTheoptimizationparametersrequiredbythereal-timetransactionprocessorandsuppliedbytherevenuemanagementsystemconstitutetheinventory
control
mechanismReal-TimeTransactionProcessoReal-TimeTransactionProcessorDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QReal-TimeTransactionProcessoReal-TimeTransactionProcessorNestedleg/classavailabilityisthepredominantinventorycontrolmechanismintheairlineindustryDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QMClassBooking10959Real-TimeTransactionProcessoReal-TimeTransactionProcessorAfareclassmustbeopenonbothflightlegsifthefareclassistobeopenonthetwo-legitinerarySATDFWEWRYClassMClassBClassQClass501000YClassMClassBClassQClass11060200Real-TimeTransactionProcessoExtract,Transform,andLoadTransactionDataComplicationsVolumePerformancerequirementsNewproductsModifiedproductsPurchasemodificationsExtract,Transform,andLoadTExtract,Transform,andLoadTransactionDataPHG01E08800005010710010710225300XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSG01OA3210LAXIAHK0108241500010824222701082422000108250227HKOA00PSG01OA9312IAHMYRK0108242330010825003701082503300108250437HKOA00PHG01E08800005010710010711125400XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHY0109020600010902071401090210000109021114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010712142000XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHL0109030600010903071401090310000109031114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010716104500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513050108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297LPSG01OA5932IAHLAXK0109030800010903094001090312000109031640HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA00PHG01E08800005010710010717111500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297QPSG01OA0981IAHLAXQ0109031420010903160801090318200109032308HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA0012345Extract,Transform,andLoadTDemandModelsandForecastingHowshoulddemandbemodeledandforecast?Smallnumbers/levelofdetailUnobserveddemandandunconstrainingElementsofdemand:purchases,cancellations,noshows,goshowsDemandmodel…theprocessbywhichconsumersmakeproductdecisionsDemandcorrelationanddistributionalassumptionsSeasonalityDemandModelsandForecastingHDemandModelsandForecastingHolidaysandrecurringeventsSpecialeventsPromotionsandmajorpriceinitiativesCompetitiveactionsDemandModelsandForecastingHOptimizationOptimizationissuesConvertibleinventoryMovableinventory/capacitymodificationsOverbooking/oversaleofphysicalinventoryUpgrade/upwardsubstitutableinventoryProductmix/competitionforresources/networkeffectsOptimizationOptimizationissueDecisionSupportDecisionSupportRevenueManagement
andDynamicPricingNon-TraditionalApplicationsRevenueManagement
andDynamicTwoNon-TraditionalApplicationsBroadcastBusinessprocessessurroundingthepurchaseandfulfillmentofadvertisingtimerequiremodificationoftraditionalrevenuemanagementmodelsHealthcareBusinessprocessessurroundingpatientadmissionsrequirere-conceptualizationoftherevenuemanagementprocessTwoNon-TraditionalApplicatioNewAreasContractsandlongtermcommitmentsofinventoryCustomerlevelrevenuemanagementIntegratingsalesandinventorymanagementAlliancesandcooperativeagreementsNewAreasContractsandlongteRevenueManagement
andDynamicPricingFurtherReadingandSpecialInterestGroupsRevenueManagement
andDynamicFurtherReadingForanentrypointintotraditionalrevenuemanagementJefferyMcGillandGarrettvanRyzin,“RevenueManagement:ResearchOverviewandProspects,”TransportationScience,33(2),1999E.AndrewBoydandIoanaBilegan,“RevenueManagementande-Commerce,”underreview,2002FurtherReadingForanentrypoSpecialInterestGroupsSpecialInterestGroupsRevenueManagement
andDynamicPricing:
PartIIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@RevenueManagement
andDynamicOutlineSingleFlightLegLeg/ClassControlBidPriceControlNetwork(O&D)ControlControlMechanismsModelsOutlineSingleFlightLegRevenueManagement
andDynamicPricingSingleFlightLegRevenueManagement
andDynamicLeg/ClassControlDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QAtafixedpointintime,whataretheoptimalnestedinventoryavailabilitylimits?Leg/ClassControlDFWEWRYAvailAMathematicalModelGiven:FareforeachfareclassDistributionoftotaldemand-to-comebyclassDemandassumedindependentDetermine:OptimalnestedbookinglimitsNote:Cancellationstypicallytreatedthroughseparateoptimizationmodeltodetermineoverbooking
levelsAMathematicalModelGiven:AMathematicalModelWheninventoryispartitionedratherthannested,thesolutionissimplePartitioninventorysothattheexpectedmarginalrevenuegeneratedofthelastseatassignedtoeachfareclassisequal(forsufficientlyprofitablefareclasses)AMathematicalModelWheninvenAMathematicalModelNestedinventorymakestheproblemsignificantlymoredifficultduetothefactthatdemandforonefareclassimpactstheavailabilityforotherfareclassesTheproblemisill-posedwithoutmakingexplicitassumptionsaboutarrivalorderEarlymodelsassumedlow-before-highfareclassarrivalsAMathematicalModelNestedinvAMathematicalModelThereexistsasubstantialbodyofliteratureonmethodsforgeneratingoptimalnestedbookingclasslimitsMathematicsbasicallyconsistsofworkingthroughthedetailsofconditioningonthenumberofarrivalsinthelowervaluefareclassesAnheuristicknownasEMSRbthatmimicstheoptimalmethodshascometodominateinpracticeAMathematicalModelThereexisAnAlternativeModelThelow-before-higharrivalassumptionwasaddressedbyassumingdemandarrivesbyfareclassaccordingtoindependentstochasticprocesses(typicallynon-homogeneousPoisson)Sincemanypractitionersconceptualizedemandas
totaldemand-to-come,modelsbasedonstochasticprocessesfrequentlycauseconfusionAnAlternativeModelThelow-beALegDPFormulationWithPoissonarrivals,anaturalsolutionmethodologyisdynamicprogrammingStagespace:timepriortodepartureStatespacewithineachstage:numberofbookingsStatetransitionscorrespondtoeventssuchasarrivalsandcancellationsALegDPFormulationWithPoiss…TT-1T-2T-310nn+1n+2n+3…SeatsRemainingTimetoDepartureCancellationNoEvent/RejectedArrivalAcceptedArrival…………………TT-1T-2T-310nn+1n+2n+3…SeatsALegDPFormulationV(t,n):Expectedreturninstaget,staten
whenmakingoptimaldecisionsV(t,n)=maxu[p0(0+V(t-1,n)) Noevent
(1-p0)c(0+V(t-1,n-1))+ Cancel
(1-p0)(fi<u)i(0+V(t-1,n))
Arrival/Reject
(1-p0)(fiu)i(fi+V(t-1,n+1))] Arrival/Acceptu(t,n):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,statenisabookingrequestALegDPFormulationV(t,n):EALegDPFormulationDPhastheinterestingcharacteristicthatitcalculatesV(t,n)forall(t,n)pairsProvidesvaluableinformationfordecisionmakingPresentscomputationalchallengesThisnaturallysuggestsanalternativecontrolmechanismtonestedfareclassavailabilityBidpricecontrolALegDPFormulationDPhasthe882591639492847884768473200……8823916194908820915891878817200………nn+1n+2n+3SeatsRemainingTT-1T-2T-310TimetoDeparture………………8480V(t,n)=
ExpectedRevenue882591639492847884768473200……8882591639492…nn+1n+2n+3SeatsRemainingT…8480V(t,n)=
ExpectedRevenueV(t,n+1)–V(t,n)=
MarginalExpectedRevenue345338330…T…352882591639492…nn+1n+2n+3SeatsRnn+1n+2n+3SeatsRemainingBidPriceControl:Withn+1seatsremaining,acceptonlyarrivalswithfaresinexcessof345345338330…T…352nn+1n+2n+3SeatsRemainingBidPBidPriceControlLikenestedbookinglimits,thereexistsasubstantialliteratureondynamicprogrammingmethodsforbidpricecontrolWhilebidpricecontrolissimpleandmathematicallyoptimal(foritsmodelingassumptions),ithasnotyetbeenbroadlyacceptedintheairlineindustrySubstantialchangestotheunderlyingbusinessprocessesBidPriceControlLikenestedbBidPriceControlSolutionsfromdynamicprogrammingcanalsobeconvertedtonestedbookinglimits,butthistechniquehasnotbeenbroadlyadoptedinpracticeBidpricecontrolcanbeimplementedwithroughlythesamenumberofcontrolparameters(bidprices)asnestedfareclassavailabilityBidPriceControlSolutionsfroRevenueManagement
andDynamicPricingNetwork(O&D)ControlControlMechanismsRevenueManagement
andDynamicNetworkControlNetworkcontrolrecognizesthatpassengersflowonmultipleflightlegsAnissueofglobalversuslocaloptimizationProblemiscomplicatedformanyreasonsForecastsofmanysmallnumbersDataLegacybusinesspracticesNetworkControlNetworkcontrolInventoryControlMechanismTheinventorycontrolmechanismcanhaveasubstantialimpactonRevenueMarketinganddistributionChangestoRESsystemChangestocontractsanddistributionchannelsInventoryControlMechanismTheExample:
LimitationsofLeg/ClassControlSATDFWEWRSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassenger$1200Y$300YExample:
LimitationsofLeg/ClExample:
LimitationsofLeg/ClassControlOptimalleg/classavailabilityistoleaveoneseatavailableinYclassoneachlegSATDFWEWRYClassMClassBClassQClass1000YClassMClassBClassQClass1000Example:
LimitationsofLeg/ClExample:
LimitationsofLeg/ClassControlSATDFWEWR$1200Y$300YWithleg/classcontrol,thereisnowaytoclose
SAT-DFWYwhileleavingSAT-DFW-EWRYopenSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassengerExample:
LimitationsofLeg/ClLimitationsofLeg/ClassControlThelimitationsofleg/classavailabilityasacontrolmechanismlargelyeliminaterevenueimprovementsfromanythingmoresophisticatedthanleg/classoptimizationForthisreason,carriersthatadoptO&DcontrolalsoadoptanewinventorycontrolmechanismRequirestremendouseffortandexpensetoworkaroundthelegacyinventoryenvironmentLimitationsofLeg/ClassContrAlternativeControlMechanismsWhiletherearemanypotentialinventorycontrolmechanismsotherthanleg/classcontrol,twohavecometopredominateO&DrevenuemanagementapplicationsVirtualnestingBidpriceNotethattheconceptofitinerary/fareclass(ODIF)inventorylevelcontrolisimpracticalAlternativeControlMechanismsVirtualNestingAprimalcontrolmechanismsimilarinflavortoleg/classcontrolAsmallsetofvirtualinventorybucketsaredeterminedforeachlegNestedinventorylevelsareestablishedforeachbucketEachleginanODIFismappedtoaleginventorybucketandanODIFisavailableforsaleifinventoryisavailableineachlegbucketVirtualNestingAprimalcontroVirtualNestingSAT-DFW-EWRYmapstovirtualbucket3onlegSAT-DFWandvirtualbucket1onlegDFW-EWRTotalavailabilityof10forSAT-DFW-EWRYSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFW-EWRYmVirtualNestingSAT-DFWYmapstovirtualbucket4onlegSAT-DFWSAT-DFWYisclosedSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFWYmapsBidPriceControlAdualcontrolmechanismAbidpriceisestablishedforeachflightlegAnODIFisopenforsaleifthefareexceedsthesumofthebidpricesonthelegsthatareusedBidPriceControlAdualcontroBidPriceControlSATDFWEWR$1200YBidPrice=$400BidPrice=$600SAT-DFW-EWRYisopenforsalebecause
$1200$400+$600
BidPriceControlSATDFWEWR$120BidPriceControlSATDFWEWRBidPrice=$400BidPrice=$600$300YSAT-DFWYisclosedforsalebecause
$300<$400BidPriceControlSATDFWEWRBidBidPriceControlSATDFWEWRIntermediatecontrolbetweenoptimizationpointsisachievedbyhavingadifferentbidpriceforeach
seatsoldininventory654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRInteBidPriceControlSATDFWEWRAfteraseatissoldthebidpriceincreases,reflectingthereducedinventoryavailability654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRAfteVirtualNestingAdvantagesVerygoodrevenueperformanceComputationallytractableRelativelysmallnumberofcontrolparametersComprehensibletousersAcceptedindustrypracticeDisadvantagesNotdirectlyapplicabletomulti-dimensionalresourcedomainsProperoperationrequiresconstantremappingofODIFstovirtualbucketsVirtualNestingAdvantagesBidPriceControlAdvantagesExcellentrevenueperformanceComputationallytractableComprehensibletousersBroaderusethanrevenuemanagementapplicationsPlacesamonetaryvalueonunitinventoryDisadvantagesGrowinguseracceptance,buthasnotreached
thesamelevelasprimalmethodsBidPriceControlAdvantagesRevenueManagement
andDynamicPricingNetwork(O&D)ControlModelsRevenueManagement
andDynamicAModelThedemandallocationmodel(alsoknownasthedemand-to-comemodel)hasbeenproposedforuseinrevenuemanagementapplications,butistypicallynotemployedForallofitslimitations,thedemandallocationmodelbringstolightmanyoftheimportantissuesinrevenuemanagementAModelThedemandallocationmDemandAllocationModelMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
I=setofODIFsE=setofflightlegsce=capacityofflightedi=demandforODIFiri=ODIFirevenueI(e)=ODIFsusingflightexi=demandallocatedtoODIFiDemandAllocationModelMax iLeg/ClassControlMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
Thevariablesxicanberolleduptogenerateleg/classavailabilityLeg/ClassControlMax iIrVirtualNestingMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
OnceODIFshavebeenassignedtolegbuckets,thevariablesxicanberolleduptogenerateleg/classavailabilityVirtualNestingMax iIriBidPriceControlMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
ThedualvariableseassociatedwiththecapacityconstraintscanbeusedasbidpricesBidPriceControlMax iIrNetworkAlgorithms:
Leg/ClassControlNetworkalgorithmsforgeneratingnestedleg/classavailabilityarenottypicallyusedLimitationsofthecontrolmechanismandfarestructureeliminatemuchofthevalueNetworkAlgorithms:
Leg/ClassNetworkAlgorithms:
VirtualNestingControlOptimizationconsistsofdeterminingtheODIFtoleg/bucketmapping,andthencalculatingnestedleg/bucketinventorylevelsBestmappingsprorateODIFfarestolegs,andthengroupsimilarproratedfaresintothesamebucketThebestprorationmethodsdependondemandforecastsandrealizedbookings,andchangedynamicallythroughoutthebookingcycleWithODIFsmappedtobuckets,nestedbucketinventorylevelsarecalculatedusingthenestedleg/bucketalgorithmofchoiceNetworkAlgorithms:
VirtualNeNetworkAlgorithms:
BidPriceControlBidpricesarenormallygenerateddirectlyorindirectlyfromthedualsolutionofanetworkoptimizationmodelNetworkAlgorithms:
BidPriceResourceAllocationModelObservationsA200legnetworkmayhave10,000activeODIFs,leadingtoanetworkoptimizationproblemwith10,000columnsand10,200rowsWith20,000passengers,theaveragenumberofpassengersperODIFis2Typically,20%oftheODIFswillcarry80%ofthetraffic,withalargenumberofODIFscarryingontheorderof.01orfewerpassengersper
networkdayResourceAllocationModelObserResourceAllocationModelMax
iIrixis.t. iI(e)xice eE (e)
xidi iI (i)
xi0
iI
ManysmallnumbersResourceAllocationModelMax LevelofDetailProblemThelevelofdetailproblemremainsapracticalconsiderationwhensettingupanyrevenuemanagementsystemWhatlevelofdetaildotheexistingdatasourcessupport?Whatlevelofdetailprovidesthebestrevenueperformance?Atwhatpointdoesforecastnoiseovercomeimprovementsfrommoresophisticated
optimizationmodels?LevelofDetailProblemThelevLevelofDetailProblemAsarule,evenwiththemanysmallnumbersinvolved,networkoptimizationalgorithmsperformconsistentlybetterthannon-networkalgorithmsDualsolutionsaretypicallymuchmorerobustandofbetterqualitythansolutionsconstructedfromprimalODIFallocationsLevelofDetailProblemAsaruRevenueManagement
andDynamicPricingNetwork(O&D)ControlOptimizationChallengesRevenueManagement
andDynamicANetworkDPFormulationNetworkDPformulationStagespace:timepriortodepartureStatespacewithineachstage:multidimensional,withnumberofbookingsoneachofMflightsStatetransitionscorrespondtoeventssuchasODIFarrivalsandcancellationsANetworkDPFormulationNetworANetworkDPFormulationV(t,n1,…,nM):Expectedreturninstaget,state (n1,…,nM)whenmakingoptimaldecisionsu(t,n1,…,nM,k):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,state(n1,…,nM)isabookingrequest forODIFkANetworkDPFormulationV(t,n1ANetworkDPFormulationObservationsA200legnetworkwithanaverageof150seatsperflightlegwouldhave150200statesperstageWith10,000activeODIFs,assumingonlysinglepassengerarrivalsandcancellations,eachstatewouldhave~20,000possiblestatetransitionsGivesriseto~20,000“bidprices”perstateANetworkDPFormulationObservAnAlternativeViewofDPConsiderabookingrequestatt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 染色体病检测指南及规范
- 企业年金管理效率提升研究
- 汽车露营地装修施工合同范本格式
- 供应链协同管理方案
- 科技清水池防水施工合同
- 电力公司总经理劳动合同范例
- 旅游管理专业教师聘用合同
- 渔业公司电工招聘及维护协议
- 医疗捐赠物品使用准则
- 健康管理中心健身房租赁协议
- 紫薇花的栽培管理方法及注意事项
- 胶轮车司机:胶轮车司机考试试题
- 舜宇集团2024测试题
- 家庭教育指导说明报告
- 医学与大数据:信息技术在医疗中的应用
- 2024年室内装饰设计师(高级工)考试复习题库(含答案)
- 2024年长沙卫生职业学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 教育培训行业2024年生产与制度改革方案
- PCB文字喷印工艺
- 2024年廖俊波同志先进事迹心得体会教师4篇
- 高考物理系统性复习 (能力提高练) 第五节 实验:探究小车速度随时间变化的规律(附解析)
评论
0/150
提交评论