北师大版数学八年级下册第5章单元检测题及解析doc2_第1页
北师大版数学八年级下册第5章单元检测题及解析doc2_第2页
北师大版数学八年级下册第5章单元检测题及解析doc2_第3页
北师大版数学八年级下册第5章单元检测题及解析doc2_第4页
北师大版数学八年级下册第5章单元检测题及解析doc2_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【若缺失公式、图片现象属于系统读取不行功,文档内容齐全完满,请放心下载。】单元测试(二)一、选择题1.式子,,x+y,,中是分式的有()A.1个B.2个C.3个D.4个2.若分式的值为0,则x的值为()A.﹣1B.0C.2D.﹣1或23.以低等式中不用然成立的是()A.B.C.D.4.化简的结果为()A.﹣1B.1C.D.5.化简分式的结果是()A.2B.C.D.﹣26.使分式的值为负的条件是()A.x<0B.x>0C.x>D.x<7.化简÷的结果是()A.mB.C.m﹣1D.8.已a,b为实数,ab=1,M=,N=,则M,N的大小关系是()A.M>NB.M=NC.M<ND.无法确定9.为了帮助受到自然灾害的地区重建家园,某学校号召同学们自觉捐款.已知第一次捐款总数为4800元,第二次捐款总数为5000元,第二次捐款人数比第一1次多20人,而且两次人均捐款额恰好相等,若是设第一次捐款人数是x人,那么x满足的方程是()A.B.=C.D..已知=2+的值为()10,则xA.B.C.7D.4二、填空题11.计算:﹣=.12.计算a3()2的结果是.13.要使分式的值为0,则x可取.14.若分式没心义,且=0,那么=.15.计算:+=.16.要使方式的值是非负数,则x的取值范围是.三、解答题17.化简:(﹣)÷.18.计算:÷.219.先化简式子(﹣)÷,尔后请采用一个你最喜欢的x值代入求出这个式子的值.20.已知,求.21.若x、y满足|x﹣2|+(2x﹣y﹣3)2=0.求:1﹣÷的值.22.化简?﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.23.已知=++,试求A+B+2C的值.324.市实验学校为创办书香校园,昨年进一批图书.经认识,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求昨年购进的文学书和科普书的单价各是多少元?(2)若今年书和科普书的单价与昨年对照保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能够购进多少本文学书?答案与解析1.式子,,x+y,,中是分式的有()A.1个B.2个C.3个D.4个【考点】61:分式的定义.【专题】选择题【解析】判断分式的依照是看分母中可否含有字母,若是含有字母则是分式,如果不含有字母则不是分式.【解答】解:,是分式,应选:B.【议论】此题主要观察分式的定义,含有字母则是分式,若是不含有字母则不是分式,注意π不是字母,是常数.42.若分式的值为0,则x的值为()A.﹣1B.0C.2D.﹣1或2【考点】63:分式的值为零的条件.【专题】选择题【解析】依照分式值为零的条件可得x﹣2=0,再解方程即可.【解答】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,应选:C.【议论】此题主要观察了分式值为零的条件,要点是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能够少.3.以低等式中不用然成立的是()A.B.C.D.【考点】65:分式的基本性质.【专题】选择题【解析】依照分式的基本性质对各选项进行判断.【解答】解:A、=,所以A选项的计算正确;B、=,所以B选项的计算正确;C、=(z≠0),所以C选项的计算不正确;D、=,所以D选项的计算正确.应选C.【议论】此题观察了分式的基本性质:分式的分子与分母同乘(或除以)一个不5等于0的整式,分式的值不变.4.化简的结果为()A.﹣1B.1C.D.【考点】6B:分式的加减法.【专题】选择题【解析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【解答】解:﹣==1;应选B.【议论】此题观察了分式的加减,依照在分式的加减运算中,若是是同分母分式,那么分母不变,把分子直接相加减即可;若是是异分母分式,则必定先通分,把异分母分式化为同分母分式,尔后再相加减即可.5.化简分式的结果是()A.2B.C.D.﹣2【考点】6C:分式的混杂运算.【专题】选择题【解析】这是个分式除法与减法混杂运算题,运算序次是先做括号内的加法,此时要先确定最简公分母进行通分;做除法时要注意先把除法运算转变成乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,尔后约分.【解答】解:=÷[+]6÷=2,应选:A.【议论】此题主要观察分式的化简求值,把分式化到最简是解答的要点,通分、因式分解和约分是基本环节.6.使分式的值为负的条件是()A.x<0B.x>0C.x>D.x<【考点】64:分式的值.【专题】选择题【解析】依照分式的值为负,以及x2+1>0,可得1﹣3x<0,据此求出x的取值范围即可.【解答】解:∵分式的值为负,x2+1>0,∴1﹣3x<0,解得x>.应选:C.【议论】此题主要观察了分式的值,以及一元一次不等式的求法,要熟练掌握.7.化简÷的结果是()A.mB.C.m﹣1D.【考点】6A:分式的乘除法.【专题】选择题【解析】原式利用除法法规变形,约分即可获取结果.【解答】解:原式=?=m,应选:A.7【议论】此题观察了分式的乘除法,熟练掌握运算法规是解此题的要点.8.已a,b为实数,ab=1,M=,N=,则M,N的大小关系是()A.M>NB.M=NC.M<ND.无法确定【考点】6B:分式的加减法.【专题】选择题【解析】对M、N分别求解计算,进行异分母分式加减,尔后把ab=1代入计算后直接采用答案.【解答】解:M==,∵ab=1,∴==1.N==,∵ab=1,∴==1,∴M=N.应选B.【议论】解答此题要点是先把所求代数式化简再把已知代入计算出最后结果后再比较大小即可.9.为了帮助受到自然灾害的地区重建家园,某学校号召同学们自觉捐款.已知第一次捐款总数为4800元,第二次捐款总数为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等,若是设第一次捐款人数是x人,那么x满足的方程是()A.B.=C.D.【考点】B6:由实责问题抽象出分式方程.【专题】选择题【解析】若是设第一次有x人捐款,那么第二次有(x+20)人捐款,依照两次人均捐款额相等,可得等量关系为:第一次人均捐款额=第二次人均捐款额,据此8列出方程即可.【解答】解:设第一次有x人捐款,那么第二次有(x+20)人捐款,由题意,有,应选B.【议论】此题观察由实责问题抽象出分式方程,解析题意,找到要点描述语,找到合适的等量关系是解决问题的要点..已知2+的值为()10=,则xA.B.C.7D.4【考点】64:分式的值.【专题】选择题【解析】先由=获取x﹣1+=2,即x+=3,再依照完满平方公式可求x2+的值.【解答】解:=,x﹣1+=2,即x+=3,x2+=(x+)2﹣2=9﹣2=7,应选:C.【议论】此题主要观察了分式的值,要点是要熟练掌握完满平方公式.11.计算:﹣=.【考点】6B:分式的加减法.【专题】填空题【解析】由于两分式的分母相同,分子不相同,故依照同分母的分式相加减的法规进行计算即可.【解答】解:原式==1.9故答案为:1.【议论】此题观察的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.12.计算a3()2的结果是.【考点】6A:分式的乘除法.【专题】填空题【解析】原式先计算乘方运算,约分即可获取结果.【解答】解:原式=a3?=a,故答案为:a【议论】此题观察了分式的乘除法,熟练掌握运算法规是解此题的要点.13.要使分式的值为0,则x可取.【考点】63:分式的值为零的条件.【专题】填空题【解析】分式的值为零时:分子等于零且分母不为零.【解答】解:依题意得:x2﹣9=0且3x+9≠0,解得x=3.故答案是:3.【议论】此题观察了分式的值为零的条件.意:“分母不为零”这个条件不能够少.14.若分式没心义,且=0,那么=.【考点】64:分式的值;62:分式有意义的条件;63:分式的值为零的条件.【专题】填空题【解析】第一依照分式有意义的条件,以及分式的值为零的条件,分别求出a、b的值各是多少;尔后应用代入法,求出的值是多少即可.【解答】解:∵分式没心义,10a+2=0,解得a=﹣2;∵=0,b﹣4=0,解得b=4,==﹣.故答案为:.【议论】此题主要观察了分式的值,分式有意义的条件,以及分式的值为零的条件,要熟练掌握.15.计算:+=.【考点】6B:分式的加减法.【专题】填空题【解析】依照同分母分式相加,分母不变分子相加,可得答案.【解答】解:原式==1,故答案为:1.【议论】此题观察了分式的加减,同分母分式相加,分母不变分子相加.16.要使方式的值是非负数,则x的取值范围是.【考点】64:分式的值.【专题】填空题【解析】要使分式的值是非负数,则x﹣1≥0或x﹣2<0,据此求出x的取值范围即可.【解答】解:∵分式的值是非负数,∴≥0,x﹣1≥0或x﹣2<0,11解得x≥1或x<﹣2.故答案为:x≥1或x<﹣2.【议论】此题主要观察了分式的值,以及一元一次不等式的解法,要熟练掌握,解答此题的要点是判断出:x﹣1≥0或x﹣2<0.17.化简:(﹣)÷.【考点】6C:分式的混杂运算.【专题】解答题【解析】第一将括号里面进行通分运算,进而利用分式除法运算法规化简求出即可.【解答】解:(﹣)÷=[﹣]××.【议论】此题主要观察了分式的混杂运算,正确进行通分运算是解题要点.18.计算:÷.【考点】6F:负整数指数幂.【专题】解答题【解析】依照积的乘方等于乘方的积,可得单项式的除法,依照单项式的除法,可得答案.【解答】解:原式=﹣2﹣2﹣1)﹣2﹣2÷[22(b﹣22](a)(bc(a))=a4b2c﹣2÷a4b﹣4=(÷)(a4÷a4)(b2÷b﹣4)c﹣2.12【议论】此题观察了负整数指数幂,利用积的乘方得出单项式的除法是解题要点.19.先化简式子(﹣)÷,尔后请采用一个你最喜欢的x值代入求出这个式子的值.【考点】6D:分式的化简求值.【专题】解答题【解析】先把括号里式子通分,再把除法转变成乘法,约分化为最简,最后代值计算.【解答】解:原式=[﹣]?x=?x=,把x=2代入得:原式=﹣1.(注:所代值不能够为0,1)【议论】此题的要点是化简,尔后把给定的值代入求值,代自己喜欢的值时,必然满足分式分母的值不为0.20.已知,求.【考点】S1:比率的性质.【专题】解答题【解析】第一设=k,尔后用含k的式子表示出x、y、z,尔后再代入可得答案.【解答】解:设=k,x=,y=,z=,==.13【议论】此题主要观察了比率的性质,要点是正确用含同一未知数的式子表示x、y、z.21.若x、y满足|x﹣2|+(2x﹣y﹣3)2=0.求:1﹣÷的值.【考点】6D:分式的化简求值;16:非负数的性质:绝对值;1F:非负数的性质:偶次方.【专题】解答题【解析】先依照分式混杂运算的法规把原式进行化简,再由非负数的性质求出x、的值,代入原式进行计算即可.【解答】解:原式=1﹣?=1﹣==﹣,|x﹣2|+(2x﹣y﹣3)2=0,∴x﹣2=0,2x﹣y=3,解得:x=2,y=1,当x=2,y=1时,原式=﹣.【议论】此题观察的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.22.化简?﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.【考点】6D:分式的化简求值;K6:三角形三边关系.【专题】解答题【解析】原式第一项约分后,两项通分并利用同分母分式的减法法规计算获取最14简结果,把a的值代入计算即可求出值.【解答】解:原式=?+=+===,a与2、3构成△ABC的三边,且a为整数,∴1<a<5,即a=2,3,4,当a=2或a=3时,原式没有意义,则a=4时,原式=1.【议论】此题观察了分式的化简求值,以及三角形三边关系,熟练掌握运算法规是解此题的要点.23.已知=++,试求A+B+2C的值.【考点】6B:分式的加减法.【专题】解答题【解析】先把等式的右边通分,即可得出关于A、B、C的方程组,求出方程组的解,即可得出答案.【解答】解:∵=++∴=∴=∴A=1,B=﹣3,C=3A+B+2C=4.【议论】此题观察了分式的加减,解三元一次方程组的应用,能得出关于A、B、的方程组是解此题的要点.24.市实验学校为创办书香校园,昨年进一批图书.经认识,科普书的单价比文学书的单价多4元,用1500元购进的科普书与1000元购进的文学书本数相等.(1)求昨年购进的文学书和科普书的单价各是多少元?15(2)若今年书和科普书的单价与昨年对照保持不变,该校打算用1250元再购进一批文学书和科普书,问购进科普书65本后至多还能够购进多少本文学书?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】解答题【解析】(1)设文学书的单价是x元,则科普书的单价是(x+4)元,依照用1500元购进的科普书与用1000元购进的文学书本数相等,可列方程求解.(2)设购进科普书65本后还

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论