版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.把的图象上各点的横标缩短为原来的(纵坐标不变),再把所得图象向右平移个单位长度,得到的图象,则()A. B.C. D.2.设,则a,b,c的大小关系为()A. B.C. D.3.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.下列所给四个图象中,与所给3件事吻合最好的顺序为()(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再去上学;(2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间;(3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速A.①②④ B.④②③C.①②③ D.④①②5.如图一铜钱的直径为毫米,穿径(即铜钱内的正方形小孔边长)为毫米,现向该铜钱内随机地投入一粒米(米的大小忽略不计),则该粒米未落在铜钱的正方形小孔内的概率为A. B.C. D.6.已知函数在上是增函数,则实数的取值范围是A. B.C. D.7.已知,,且,,则的值是A. B.C. D.8.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.9.已知全集,,则()A. B.C. D.10.已知向量,其中,则的最小值为()A.1 B.2C. D.3二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知幂函数在区间上单调递减,则___________.12.____.13.已知函数部分图象如图所示,则函数的解析式为:____________14.若“”是“”的充要条件,则实数m的取值是_________15.________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数与.(1)判断的奇偶性;(2)若函数有且只有一个零点,求实数a的取值范围.17.某水果经销商决定在八月份(30天计算)销售一种时令水果.在这30天内,日销售量h(斤)与时间t(天)满足一次函数h=t+2,每斤水果的日销售价格l(元)与时间t(天)满足如图所示的对应关系.(Ⅰ)根据提供的图象,求出每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式;(Ⅱ)设y(元)表示销售水果的日收入(日收入=日销售量×日销售价格),写出y与t的函数关系式,并求这30天中第几天日收入最大,最大值为多少元?18.已知函数,两相邻对称中心之间的距离为(1)求函数的最小正周期和的解析式.(2)求函数的单调递增区间.19.已知函数(1)求的最小正周期;(2)若,,求的值20.已知函数,(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)如果,求x的取值范围.21.已知函数,求:(1)的最小正周期及最大值;(2)若且,求的值;(3)若,在有两个不等的实数根,求的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据三角函数的周期变换和平移变换的原理即可得解.【详解】解:把的图象上各点的横标缩短为原来的(纵坐标不变),可得的函数图像,再把所得图象向右平移个单位长度,可得函数,所以.故选:C.2、D【解析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D3、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B4、D【解析】根据回家后,离家的距离又变为可判断(1);由途中遇到一次交通堵塞,可判断中间有一段函数值没有发生变化;由为了赶时间开始加速,可判断函数的图像上升的速度越来越快;【详解】离开家不久发现自己把作业本忘在家里,回到家里,这时离家的距离为,故应先选图像(4);途中遇到一次交通堵塞,这这段时间与家的距离必为一定值,故应选图像(1);后来为了赶时间开始加速,则可知图像上升的速度越来越快,故应选图像(2);故选:D【点睛】本题主要考查函数图象的识别,解题的关键是理解题干中表述的变化情况,属于基础题.5、B【解析】由题意结合几何概型公式可得:该粒米未落在铜钱的正方形小孔内的概率为:.本题选择B选项.点睛:数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,通用公式:P(A)=.6、A【解析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”
函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反7、B【解析】由,得,所以,,得,,所以,从而有,.故选:B8、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.9、C【解析】根据补集的定义可得结果.【详解】因为全集,,所以根据补集的定义得,故选C.【点睛】若集合的元素已知,则求集合的交集、并集、补集时,可根据交集、并集、补集的定义求解10、A【解析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【详解】因为,所以,因为,所以,故的最小值为.故选A【点睛】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据幂函数定义求出值,再根据单调性确定结果【详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:12、.【解析】本题直接运算即可得到答案.【详解】解:,故答案为:.【点睛】本题考查指数幂的运算、对数的运算,是基础题.13、【解析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.14、0【解析】根据充要条件的定义即可求解.【详解】,则{x|}={x|},即.故答案为:0.15、【解析】根据对数运算、指数运算和特殊角的三角函数值,整理化简即可.【详解】.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)偶函数(2)【解析】(1)根据奇偶性定义判断;(2)函数只有一个零点,转化为方程只有一个根,用换元法转化为二次方程只有一个正根(或两个相等正根),再根据二次方程根分布分类讨论可得小问1详解】∵的定义域为R,∴,∴为偶函数.【小问2详解】函数只有一个零点即即方程有且只有一个实根.令,则方程有且只有一个正根.①当时,,不合题意;②当时,若方程有两相等正根,则,且,解得;满足题意③若方程有一个正根和一个负根,则,即时,满足题意.∴实数a的取值范围为.17、(I);(II)见解析.【解析】(Ⅰ)利用已知条件列出时间段上的函数的解析式即可.(Ⅱ)利用分段函数的解析式求解函数的最值即可【详解】解:(Ⅰ)当0<t≤10,l=30,当10<t≤30时,设函数关系式为l(t)=kt+b,则,解得k=-1,b=40,∴l(t)=-t+40,∴每斤水果的日销售价格l(元)与时间t(天)所满足的函数关系式l(t)=,(Ⅱ)当0≤t≤10,y=30(t+2)=15t+60,当10<t≤30时,y=(t+2)(-t+40)=-t2+18t+80∴y=,当0≤t≤10,y=15t+60为增函数,则ymax=210,当10<t≤30时,y=-t2+18t+80=-(t-18)2+242,当t=18时,ymax=242,综上所述,第18天日收入最大,最大值为242元【点睛】本题考查分段函数的应用,实际问题的处理方法,考查分析问题解决问题的能力.18、(1),(2)【解析】(1)根据相邻对称中心之间间隔可求得最小正周期和,由此可得解析式;(2)令,解不等式即可得到所求单调递增区间.小问1详解】两相邻对称中心之间的距离为,的最小正周期,,解得:,;【小问2详解】令,解得:,的单调递增区间为.19、(1)(2)【解析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以20、(1);(2)见解析;(3)【解析】(1)根据真数大于零列不等式,解得结果,(2)根据奇函数定义判断并证明结果,(3)根据底与1的大小,结合对数函数单调性分类化简不等式,解得结果.【详解】(1)由,得-3<x<3,∴函数的定义域为(-3,3)(2)由(1)知,函数的定义域关于原点对称,且h(-x)+h(x)=0,h(-x)=-h(x),∴函数奇函数(3),所以,解得,所以.21、(1)函数的最小正周期为,最大值为;(2);(3).【解析】(1)利用三角恒等变换思想化简函数的解析式为,利用正弦型函数的周期公式可求得函数的最小正周期,利用正弦函数的有界性可求得函数的最大值;(2)求出的取值范围,由可得出,可得出,进而可求得角的值;(3)令,由可求得,由可得出,问题转化为直线与函数在上的图象有两个交点,数形结合可得出关于实数的不等式,由此可解得实数的取值范围.【详解】(1),所以,函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青少年如何预防糖尿病
- 成都高尔夫球场租赁合同范本
- 电力公司入驻管理
- 酒店网络营销人员劳动合同模板
- 融资风险防范确保企业资金安全
- 智能家居招投标基本知识介绍
- 国有企业采购政策制定
- 电力工程钢板租赁协议
- 市场营销技能工资管理
- 环保科技公司人事经理聘用合同
- 言语理解与表达的真题全面
- 人体常见病 知到智慧树网课答案
- SJG 164-2024 自密实混凝土应用技术规程
- 2024年上海市中考语文一轮复习:教材知识点归纳
- 临床医学职业生涯规划
- 幼儿园课程故事开展培训
- 《电力建设施工技术规范 第3部分:汽轮发电机组》DLT 5190.3
- 重大版小学英语六年级上册全册教案
- 跌倒坠床护理个案分析
- 火力发电厂施工图设计内容深度规定
- 酒店经理管理酒店运营
评论
0/150
提交评论