吉林省通榆一中2022-2023学年数学高一上期末学业水平测试试题含解析_第1页
吉林省通榆一中2022-2023学年数学高一上期末学业水平测试试题含解析_第2页
吉林省通榆一中2022-2023学年数学高一上期末学业水平测试试题含解析_第3页
吉林省通榆一中2022-2023学年数学高一上期末学业水平测试试题含解析_第4页
吉林省通榆一中2022-2023学年数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,共60分)1.已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则()A.{-1} B.{0,1}C.{-1,2,3} D.{-1,0,1,3}2.已知实数x,y满足,那么的最大值为()A. B.C.1 D.23.已知函数在R上为减函数,则实数a的取值范围是()A. B.C. D.4.若α=-2,则α的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限5.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信噪比从1000提升至8000,则C大约增加了()()A.10% B.30%C.60% D.90%6.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.77.已知,则的取值范围是()A. B.C. D.8.两平行直线l1:3x+2y+1=0与l2:6mx+4y+m=0之间的距离为A.0 B.C. D.9.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.函数的定义域是A. B.C. D.11.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.12.符号函数是一个很有用的函数,符号函数能够把函数的符号析离出来,其表达式为若定义在上的奇函数,当时,,则的图象是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.函数的反函数为___________14.我国采用的“密位制”是6000密位制,即将一个圆周分为6000等份,每一个等份是一个密位,那么120密位等于______rad15.已知,若方程恰有个不同的实数解、、、,且,则______16.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.三、解答题(本大题共6小题,共70分)17.已知圆经过(2,5),(﹣2,1)两点,并且圆心在直线yx上.(1)求圆的标准方程;(2)求圆上的点到直线3x﹣4y+23=0的最小距离.18.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.19.已知函数为奇函数(1)求函数的解析式并判断函数的单调性(无需证明过程);(2)解不等式20.已知函数(1)若函数在区间上有且仅有1个零点,求a的取值范围:(2)若函数在区间上的最大值为,求a的值21.我国所需的高端芯片很大程度依赖于国外进口,“缺芯之痛”关乎产业安全、国家经济安全.如今,我国科技企业正在芯片自主研发之路中不断崛起.根据市场调查某手机品牌公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设该公司一年内共生产该款手机万部并全部销售完,每万部的销售收入为万美元,且当该公司一年内共生产该款手机2万部并全部销售完时,年利润为704万美元.(1)写出年利润(万美元)关于年产量(万部)的函数解析式:(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.22.已知定义域为的函数是奇函数.(1)求的值;(2)判断并证明函数的单调性;(3)若对任意的不等式恒成立,求实数的取值范围.

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】由交集与补集的定义即可求解.【详解】解:因为集合A={0,1,2},B={-1,0,1},所以,又全集U={-1,0,1,2,3},所以,故选:C.2、C【解析】根据重要不等式即可求最值,注意等号成立条件.【详解】由,可得,当且仅当或时等号成立.故选:C.3、D【解析】根据分段函数单调性,可得关于的不等式组,解不等式组即可确定的取值范围.【详解】函数在R上为减函数所以满足解不等式组可得.故选:D【点睛】本题考查了分段函数单调性的应用,根据分段函数的单调性求参数的取值范围,属于中档题.4、C【解析】根据角的弧度制与角度制之间的转化关系可得选项.【详解】因为1rad≈57.30°,所以-2rad≈-114.60°,故α的终边在第三象限故选:C.5、B【解析】根据所给公式、及对数的运算法则代入计算可得;【详解】解:当时,,当时,,∴,∴约增加了30%.故选:B6、B【解析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B7、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B8、C【解析】根据两平行直线的系数之间的关系求出,把两直线的方程中的系数化为相同的,然后利用两平行直线间的距离公式,求得结果.【详解】直线l1与l2平行,所以,解得,所以直线l2的方程为:,直线:即,与直线:的距离为:.故选:C【点睛】本题考查直线平行的充要条件,两平行直线间的距离公式,注意系数必须统一,属于基础题.9、A【解析】由于,所以由终边相同的定义可得结论【详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A10、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.11、C【解析】由题意,故选C12、C【解析】根据函数的奇偶性画出的图象,结合的知识确定正确答案.【详解】依题意,是定义在上的奇函数,图象关于原点对称.当时,,结合的奇偶性,作出的大致图象如下图所示,根据的定义可知,选项C符合题意.故选:C二、填空题(本大题共4小题,共20分)13、【解析】先求出函数的值域有,再得出,从而求得反函数.【详解】由,可得由,则,所以故答案为:.14、##【解析】根据已知定义,结合弧度制的定义进行求解即可.【详解】设120密位等于,所以有,故答案为:15、【解析】作出函数的图象以及直线的图象,利用对数的运算可求得的值,利用正弦型函数的对称性可求得的值,即可得解.【详解】作出函数的图象以及直线的图象如下图所示:由图可知,由可得,即,所以,,可得,当时,,由,可得,由图可知,点、关于直线对称,则,因此,.故答案为:.16、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.三、解答题(本大题共6小题,共70分)17、(1)(x﹣2)2+(y﹣1)2=16(2)1【解析】(1)先求出圆心的坐标和圆的半径,即得圆的标准方程;(2)求出圆心到直线3x﹣4y+23=0的距离即得解.【详解】(1)A(2,5),B(﹣2,1)中点为(0,3),经过A(2,5),B(﹣2,1)的直线的斜率为,所以线段AB中垂线方程为,联立直线方程y解得圆心坐标为(2,1),所以圆的半径.所以圆的标准方程为(x﹣2)2+(y﹣1)2=16.(2)圆的圆心为(2,1),半径r=4.圆心到直线3x﹣4y+23=0的距离d.则圆上的点到直线3x﹣4y+23=0的最小距离为d﹣r=1.【点睛】本题主要考查圆的标准方程的求法和圆上的点到直线的距离的最值的求法,意在考查学生对这些知识的理解掌握水平.18、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知在其定义域上单调递增.所以在上的最大值为,对任意恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用.19、(1),单调递增(2)【解析】(1)直接由解出,再判断单调性即可;(2)利用奇函数和单增得到,解对数不等式即可.【小问1详解】因为函数的定义域为R,且是奇函数所以,即,解得,经检验,,为奇函数,所以函数解析式为,函数为单调递增的函数.【小问2详解】因为函数在R上单调递增且为奇函数,解得,.20、(1)(2)【解析】(1)结合函数图象,分四种情况进行讨论,求出a的取值范围;(2)对对称轴分类讨论,表达出不同范围下的最大值,列出方程,求出a的值.【小问1详解】①,解得:,此时,零点为,0,不合题意;②,解得:,此时,的零点为,1,不合题意;③,解得:,当时,的零点为,不合题意;当时,的零点为,不合题意;④,解得:,综上:a的取值范围是【小问2详解】对称轴为,当,即时,在上单调递减,,舍去;当,即时,,解得:或(舍去);当,即时,在上单调递增,,解得:(舍去);综上:21、(1);(2)32万部,最大值为6104万美元.【解析】(1)先由生产该款手机2万部并全部销售完时,年利润为704万美元,解得,然后由,将代入即可.(2)当时利用二次函数的性质求解;当时,利用基本不等式求解,综上对比得到结论.【详解】(1)因为生产该款手机2万部并全部销售完时,年利润为704万美元.所以,解得,当时,,当时,.所以(2)①当时,,所以;②当时,,由于,当且仅当,即时,取等号,所以此时的最大值为5760.综合①②知,当,取得最大值为6104万美元.【点睛】思路点睛:应用题的基本解题步骤:(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值;(2)设变量时一般要把求最大值或最小值的变量定义为函数;(3)解应用题时,要注意变量的实际意义及其取值范围;(4)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解22、(1),;(2)为定义在上的减函数,证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论