版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在关于的不等式中,“”是“恒成立”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.复数满足,则()A. B. C. D.3.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.4.已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为()A. B. C. D.15.设是虚数单位,,,则()A. B. C.1 D.26.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B. C. D.7.宁波古圣王阳明的《传习录》专门讲过易经八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“—”表示一根阳线,“——”表示一根阴线).从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为()A. B. C. D.8.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A. B. C. D.9.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.10.已知为圆的一条直径,点的坐标满足不等式组则的取值范围为()A. B.C. D.11.已知集合,,则()A. B. C. D.12.设P={y|y=-x2+1,x∈R},Q={y|y=2x,x∈R},则A.PQ B.QPC.Q D.Q二、填空题:本题共4小题,每小题5分,共20分。13.动点到直线的距离和他到点距离相等,直线过且交点的轨迹于两点,则以为直径的圆必过_________.14.某中学举行了一次消防知识竞赛,将参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,记图中从左到右依次为第一、第二、第三、第四、第五组,已知第二组的频数是80,则成绩在区间的学生人数是__________.15.设、满足约束条件,若的最小值是,则的值为__________.16.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足(),数列的前项和,(),且,.(1)求数列的通项公式:(2)求数列的通项公式.(3)设,记是数列的前项和,求正整数,使得对于任意的均有.18.(12分)如图,三棱柱中,与均为等腰直角三角形,,侧面是菱形.(1)证明:平面平面;(2)求二面角的余弦值.19.(12分)如图,在四棱锥中,底面为等腰梯形,,为等腰直角三角形,,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.20.(12分)已知数列是各项均为正数的等比数列,数列为等差数列,且,,.(1)求数列与的通项公式;(2)求数列的前项和;(3)设为数列的前项和,若对于任意,有,求实数的值.21.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.22.(10分)已知函数(1)若,试讨论的单调性;(2)若,实数为方程的两不等实根,求证:.
2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【答案解析】
讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【题目详解】解:当时,,由开口向上,则恒成立;当恒成立时,若,则不恒成立,不符合题意,若时,要使得恒成立,则,即.所以“”是“恒成立”的充要条件.故选:C.【答案点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出是的充分条件;若,则推出是的必要条件.2.C【答案解析】
利用复数模与除法运算即可得到结果.【题目详解】解:,故选:C【答案点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.3.D【答案解析】
根据统计数据,求出频率,用以估计概率.【题目详解】.故选:D.【答案点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.4.B【答案解析】
过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.设,将表示成关于的函数,再求函数的最值,即可得答案.【题目详解】过点E作,垂足为H,过H作,垂足为F,连接EF.因为平面平面ABCD,所以平面ABCD,所以.因为底面ABCD是边长为1的正方形,,所以.因为平面ABE,所以点C到平面ABE的距离等于点H到平面ABE的距离.易证平面平面ABE,所以点H到平面ABE的距离,即为H到EF的距离.不妨设,则,.因为,所以,所以,当时,等号成立.此时EH与ED重合,所以,.故选:B.【答案点睛】本题考查空间中点到面的距离的最值,考查函数与方程思想、转化与化归思想,考查空间想象能力和运算求解能力,求解时注意辅助线及面面垂直的应用.5.C【答案解析】
由,可得,通过等号左右实部和虚部分别相等即可求出的值.【题目详解】解:,,解得:.故选:C.【答案点睛】本题考查了复数的运算,考查了复数相等的涵义.对于复数的运算类问题,易错点是把当成进行运算.6.B【答案解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.7.B【答案解析】
根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【题目详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【答案点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.8.B【答案解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.【题目详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B.【答案点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.9.D【答案解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.考点:本题主要考查三视图及几何体体积的计算.10.D【答案解析】
首先将转化为,只需求出的取值范围即可,而表示可行域内的点与圆心距离,数形结合即可得到答案.【题目详解】作出可行域如图所示设圆心为,则,过作直线的垂线,垂足为B,显然,又易得,所以,,故.故选:D.【答案点睛】本题考查与线性规划相关的取值范围问题,涉及到向量的线性运算、数量积、点到直线的距离等知识,考查学生转化与划归的思想,是一道中档题.11.B【答案解析】
求出集合,利用集合的基本运算即可得到结论.【题目详解】由,得,则集合,所以,.故选:B.【答案点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.12.C【答案解析】
解:因为P={y|y=-x2+1,x∈R}={y|y1},Q={y|y=2x,x∈R}={y|y>0},因此选C二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】
利用动点到直线的距离和他到点距离相等,,可知动点的轨迹是以为焦点的抛物线,从而可求曲线的方程,将,代入,利用韦达定理,可得,从而可知以为直径的圆经过原点O.【题目详解】设点,由题意可得,,,可得,设直线的方程为,代入抛物线可得,,,,以AB为直径的圆经过原点.故答案为:(0,0)【答案点睛】本题考查了抛物线的定义,考查了直线和抛物线的交汇问题,同时考查了方程的思想和韦达定理,考查了运算能力,属于中档题.14.30【答案解析】
根据频率直方图中数据先计算样本容量,再计算成绩在80~100分的频率,继而得解.【题目详解】根据直方图知第二组的频率是,则样本容量是,又成绩在80~100分的频率是,则成绩在区间的学生人数是.故答案为:30【答案点睛】本题考查了频率分布直方图的应用,考查了学生综合分析,数据处理,数形运算的能力,属于基础题.15.【答案解析】
画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求出的值即可.【题目详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,,解得.故答案为:.【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.16.【答案解析】
分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【题目详解】首先,第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有种;第二行的每个位置的人员安排有种;第三行的每个位置的人员安排有种.所以来自同一队的战士既不在同一行,也不在同一列的概率.故答案为:.【答案点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)().(2),.(3)【答案解析】
(1)依题意先求出,然后根据,求出的通项公式为,再检验的情况即可;(2)由递推公式,得,结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,,,,.记,利用函数单调性可求的范围,从而列不等式可解.【题目详解】解:(1)因为数列满足()①;②当时,.检验当时,成立.所以,数列的通项公式为().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因为,所以,上式同除以,得,,即,所以,数列时首项为1,公差为1的等差数列,故,.(3)因为.所以,,,,.记,当时,.所以,当时,数列为单调递减,当时,.从而,当时,.因此,.所以,对任意的,.综上,.【答案点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.18.(1)见解析(2)【答案解析】
(1)取中点,连接,,通过证明,得,结合可证线面垂直,继而可证面面垂直.(2)设,建立空间直角坐标系,求出平面和平面的法向量,继而可求二面角的余弦值.【题目详解】解析:(1)取中点,连接,,由已知可得,,,∵侧面是菱形,∴,,,即,∵,∴平面,∴平面平面.(2)设,则,建立如图所示空间直角坐标系,则,,,,,,,,设平面的法向量为,则,令得.同理可求得平面的法向量,∴.【答案点睛】本题考查了面面垂直的判定,考查了二面角的求解.一般在求二面角或者线面角的问题时,常建立空间直角坐标系,通过求面的法向量、线的方向向量,继而求解.特别地,对于线面角问题,法向量与方向向量的余角才是所求的线面角,即两个向量夹角的余弦值为线面角的正弦值.19.(1)证明见解析;(2)【答案解析】
(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【题目详解】(1)证明:如图1,取的中点,连接.,,,,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,,易知,.则,,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,,,所以,所以平面与平面所成的二面角的正弦值为.【答案点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.20.(1),(2)(3)【答案解析】
(1)假设公差,公比,根据等差数列和等比数列的通项公式,化简式子,可得,,然后利用公式法,可得结果.(2)根据(1)的结论,利用错位相减法求和,可得结果.(3)计算出,代值计算并化简,可得结果.【题目详解】解:(1)依题意:,即,解得:所以,(2),,,上面两式相减,得:则即所以,(3),所以由得,,即【答案点睛】本题主要考查等差数列和等比数列的综合应用,以及利用错位相减法求和,属基础题.21.(2),(2),的最大整数是2.(3)存在,【答案解析】
(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【题目详解】解:(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度堤坝施工工程承包协议版B版
- 2024年新型生态园林景观建设项目承包合同版B版
- 社区运动场建设协议
- 2024年新版汽车抵押租借协议样式版B版
- 学前班住校生营养配餐计划
- 2024版环保垃圾处理服务协议:劳务输出与运营管理细节2篇
- 设备租赁合同:演出音响设备租赁
- 货车租赁解除协议样本
- 城市公交站牌广告牌租赁合同
- 摄影展摄影师合作合同
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- 数学六年级上册《比》练习题(含答案)
- 宗教事务条例培训
- 2024年-2025年《市场调查与预测》考试题库及答案
- 2024至2030年中国水晶产品数据监测研究报告
- 2024年河北省高考历史试卷(含答案解析)
- T-TSSP 032-2023 夹壳核桃油加工技术规程
- GB/T 44692.1-2024危险化学品企业设备完整性第1部分:管理体系要求
- GB/T 44493-2024智慧城市基础设施智慧交通中城市停车位匹配实施指南
- 领导干部离任交接表
- 企业主要负责人安全培训试题附参考答案【考试直接用】
评论
0/150
提交评论