版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
大数据应用与解决方案行业投资潜力及发展前景分析品牌资产增值与市场营销过程品牌资产增值是市场营销活动的重要结果。品牌存在于顾客的心智之中。营销者在建立强势品牌时面临的挑战是:他们必须保证提供的产品和服务能针对顾客的需求,同时能配合市场营销方案,从而把顾客的思想、感情、形象、信念、感知和意见等与品牌关联起来;而基于顾客的品牌资产就是顾客品牌知识所导致的对营销活动的差异化反应。品牌资产来源于以往对此品牌的营销投资。营销者在长期实践中创造的品牌知识,决定了该品牌的未来方向。消费者是基于其品牌知识进行品牌选择的,这意味着“顾客会认为品牌应该与营销活动或文案如影随形。”“品牌资产可以提供更多的注意力和领导能力,并给营销者提供一个途径,以解释他们过去的营销业绩以及对未来营销方案的设计。公司所做的一切都可能会增强或破坏品牌资产”。正所谓营销做来做去做品牌,品牌资产增值的主要表现是溢价。与此相对,强势品牌也自然产生市场营销优势,如“对产品性能的良好感知”“更高的忠诚度”“受到更少的竞争性营销活动的影响”“受到更小的营销危机的影响”“更大的边际收益”“顾客对涨价缺乏弹性”“顾客对降价富有弹性”“更多的商业合作和支持”“增强营销沟通的有效性”“有特许经营的机会”“具有品牌延伸的机会”等。大数据行业面临的机遇(一)产业政策集中出台,多层次政策体系日益健全十八届五中全会提出实施国家大数据战略以来,《促进大数据发展行动纲要》指出,建立安全可信的大数据技术体系是推进大数据产业基础研究和核心技术攻关的重要目标。2021年3月,在我国十四五规划和2035年远景目标纲要提出,培育壮大人工智能、大数据等新兴数字产业,充分发挥海量数据和丰富应用场景优势,促进数字技术与实体经济深度融合,赋能传统行业转型升级,打造数字经济新优势。加快数字化发展,打造数字经济新优势,协同推进数字产业化和产业数字化转型,加快数字社会建设步伐,营造良好数字生态,建设数字中国。2020年4月,国家发改委明确了新基建是以技术创新为驱动,以信息网络为基础,面向高质量发展需要,提供数字转型、智能升级、融合创新等服务的基础设施体系。其中,在新一代信息技术关键领域锻长板的重要举措包括:推动新一代信息技术与制造业融合发展,加速工业企业数字化、智能化转型,提高制造业数字化、网络化、智能化发展水平,推进制造模式、生产方式以及企业形态变革,带动产业转型升级。未来新兴产业及数字经济的发展将更依赖于数据资源,数据基础设施建设也是支撑5G、数据中心、工业互联网等新一代信息技术基础设施的基础,因此大数据是新基建的重要组成部分,也将推进大数据底层软件等核心国产软件的快速发展。(二)数据管理软件国产化趋势明显,国产大数据产品有望实现换道超车国内数据管理软件基本被Oracle、IBM和微软为代表的国外关系型数据库厂商主导,国产软件产品渗透率低。随着国内客户越来越重视数据与信息安全,国产软件产品在关键领域实现替代成为其中重要环节,越来越多的客户已经开始或计划相关软硬件的采购计划。大数据时代下,数据管理软件正在逐步由集中式架构软件向分布式架构软件演进,国产大数据产品有望实现换道超车,对国外数据管理软件进行替代。从功能来看,基于新兴分布式架构的国产大数据产品已经能满足市面上绝大多数数据应用场景基础需求。但国产大数据产品能否在市场竞争中胜出、占据更多的市场份额,仍然取决于国产大数据产品能否构建自主研发的生态以及产品的全球竞争力。目前,为保障国家信息安全,自主研发的国产大数据生态体系正在形成,此前国产软硬件发展面临的格局分散、生态基础不完善、规模用户群体缺乏等障碍正被逐步攻克。随着国产大数据生态体系进入快速协同发展阶段,国产大数据产品与服务迎来较好的发展机遇。(三)数据成为新生产要素,各行业的大数据应用需求巨大2020年4月,《关于构建更加完善的要素市场化配置体制机制的意见》指出,数据已成为继土地、劳动力、资本、技术之后的新一代生产要素,是数字经济发展的基础性、关键性、决定性的生产要素,对经济发展、社会治理、人民生活产生着重大而深刻的影响。激活数据要素潜能,加快数字经济、数字社会,以数字化驱动生产方式、生活方式和治理方式变革成为我国当下发展的重点。企业建设数字化能力,高效解决企业运营中的问题,优化企业业务流程、提高效率,成为企业发展的核心竞争力之一,在金融、交通、能源、制造等国民经济重要领域实际提升数字化能力需求巨大。此外,在企业数字化程度提高后,数据走向资源化是大势所趋,在数据资源化的过程中,建立行业间高效的数据交换机制,实现数据的互联互通、信息共享、业务协同,以成为整合信息资源,深度利用分散数据的有效途径。加快数字化转型,构建数据共享服务体系,促进数据与业务应用快速融合,将助力中国经济从高速增长转向高质量发展,推动数字中国建设。(四)大数据应用的快速发展,推动大数据管理平台需求的快速增长近年来,大数据增长集中于物联网设备、多媒体、日志、社交信息等,这些数据具有数据类型多、数据量大、流转速度快、价值密度低的特点。传统关系型数据库无法满足处理半结构化及非结构化数据需要,具有综合能力的大数据管理平台有易于扩展、无序存储、分布式架构的特性,相比传统关系型数据库,更能满足对这些数据的存储需求。大数据管理平台不仅具有存储管理海量数据能力、数据处理性能高和易于扩展的特性,还可以保持传统关系数据库支持ACID和SQL查询等特性,支持关系数据模型。在大数据市场发展下,大数据管理平台需求快速增长。(五)数据价值的深度挖掘需求将带动智能分析工具的快速发展智能分析工具主要专注于为数据预处理、特征工程、数据建模、预测分析等数据分析挖掘关键过程提供工具和相关解决方案,是企业实现对海量数据的深度挖掘的重要工具。随着大数据环境下,数据分析复杂程度的加深,数据科学平台需要持续优化其平台流程、协作及模型治理特性,以保持与软件开发中最佳实践一致。同时,数据科学平台厂商也将通过整合针对算法筛选、分布式模型训练、模型管理、知识图谱和高性能推理等任务的创新解决方案来实现差异化竞争。为了在大数据环境下快速帮助客户实现人工智能赋能的商业决策,智能分析工具将迎来快速发展机遇,在云原生、AI工程化、低代码、隐私安全、云边一体等方面发挥更大的作用。大数据行业未来发展趋势(一)分布式系统成为行业技术架构主要的发展方向传统数据库以集中式架构为主,集中式架构由一台或多台主计算机组成中心节点,数据存储以及整个系统的业务单元都集中部署于该中心节点中,系统所有的功能均由中心节点集中处理。每个终端或客户端仅仅负责数据的录入和输出,而数据的存储与控制处理完全交由主机完成。分布式架构下,软件组件分布在不同主机上,主机之间通过网络连接进行通信和协调。随着海量及异构数据的数据分析需求增长,需要的计算、存储和IO等资源也在极速增加。集中式架构通过改善硬件配置来提升存储和处理能力,但单台主机可配置的资源存在上限,因此传统的集中式架构软件难以满足海量及异构数据的数据集的处理和分析需求。而为了处理TB以及PB级别以上的数据规模,分布式的架构将数据分散在网络上多个通过高速网络互联的节点上联合计算。因为数据分布在不同节点,在进行计算任务时,任务也会被切分成多个子任务,分发到多个节点上同时进行计算,能充分利用整个集群各个节点的计算资源、存储资源和IO资源,可线性提升集群的存储和处理能力。因此,分布式架构能较好的处理该类问题,这也是分布式架构相对于传统单机架构的核心优势。在大数据场景下,分布式系统在扩展性、容错性、经济性、灵活性、可用性和可维护性方面具有明显优势,能够较好的满足大数据分析的需求。此外,近年来,分布式技术不断发展,在提供高弹性、支持高并发的同时,支持关系型数据库中强事务性的特性,成为大数据技术的重要发展方向。2、数据管理软件趋向于统一多数据模型的平台数据模型是决定数据库系统逻辑的重要因素,并从根本上决定以何种方式存储、组织和操作数据,包括传统的关系模型和NoSQL数据模型(文档模型、键值模型、图模型等)。大多数数据库管理系统只能支持一种或少数几种数据模型,因此企业通常只能使用多种数据库产品联合的方案来应对日益增长的异构数据模型处理需求。随着大数据厂商技术实力的提升,逐渐出现了能够提供多数据库模型的大数据平台技术。相比多种数据库产品的集成方案,多种数据库模型统一的大数据平台的优势包括:(1)提升场景效率。同一份数据可以分别采用多种数据模型存放,解决不同场景的处理效率问题;(2)统一分析管理。关联不同模型的数据,统一分析管理;(3)降低运维成本。无需维护多种数据库,降低运维成本;(4)降低数据持有成本,同一份数据在不同的数据模型当中不需要全量存储,不同模型只需要存储必要的数据内容即可,在查询时可以通过关联的方式获取全量信息。未来多模型数据平台将通过不断提高计算、存储引擎的处理能力,从操作响应速度、数据并发能力、数据管理成本等多个角度优化企业的数据需求,成为多模大数据平台的重要发展趋势。(二)云原生大数据平台架构成为未来的主要发展方向云原生的代表技术包括容器、服务网格、微服务、不可变基础设施和声明式API,这些技术能够构建容错性好、易于管理和便于观察的松耦合系统。结合可靠的自动化手段,云原生技术使工程师能够轻松地对系统作出频繁和可预测的重大变更。云原生技术有利于各组织在公有云、私有云和混合云等新型动态环境中,构建和运行可弹性扩展的应用。面对客户日益增长的海量数据、多种数据结构的实时化、智能化处理需求,云原生的大数据平台架构凭借计算存储解耦、资源池化、Serverless等核心技术,提供了高弹性拓展、海量存储、多种数据类型处理及低成本计算分析的能力。相比传统数据库,云原生数据库及数据管理平台天然具备灵活性,能够提供强大的创新能力、丰富多样的产品体系、经济高效的部署方式和按需付费的支付模式。(三)国家加速数据要素市场建设,推动数据安全流通技术的商业化加速我国将搭建统一开放、竞争有序的数据要素市场体系,政策鼓励产业链各环节的市场主体进行数据流通和交易,促进数据要素流通。当前,丰富的数据要素资源已经涵盖了金融、运营商、房地产、医疗、能源、交通、物流、教育以及制造业、电商平台、社交网站等众多领域。同时,由于数据的流通和利用是数据要素价值创造的前提。而跨域、跨中心的数据融合计算需求,以及数据要素在开放流通环节中的安全需求(包括可用不可见、可用不可得、可用不出域等),都使得数据的安全可信流通成为数据要素的市场化配置的重要一环,也是各行业数字化转型过程中和过程后的必由之路。随着《数据安全法》、《个人信息保护法》的实施,以安全为前提的数据开放利用将迎来新一轮发展机遇。隐私计算是在处理、分析计算数据的过程中保持数据不透明、不泄露、无法被计算方以及其他非授权方获取的一种技术解决方案,能够在充分保护数据和隐私安全的前提下,实现数据价值的转化和释放,应用前景和商业价值巨大。在国家加速数据要素市场建设和重视数据安全和隐私保护的大背景下,数据安全防护技术、隐私计算技术的应用普及和商业化在加速进行。大数据行业发展背景(一)大数据时代下传统数据管理软件面临多种挑战近年来随着互联网、移动互联网、物联网、5G等信息通信技术及产业的不断发展,全球数据量呈爆发式增长态势。数据作为和土地、资本、劳动力、技术一样的生产要素,在数字经济不断深入发展的过程中,地位愈发凸显。我国是数据资源大国,IDC研究报告指出,到2020年,中国数据量约12.6ZB,较2015年增长7倍,年复合增长率为124%。2025年中国的数据量预计达到48.6ZB,约占全球数据总量的30%。数据资源总体呈现出4V的特点,即海量的数据规模(Volume)、多样的数据类型(Variety)、价值密度低(Value)、快速的数据流转(Velocity)。海量的数据规模指数据量大,包括采集、存储和计算过程中所涉及数据量都非常大。大数据的起始计量单位通常是PB(约1,000TB)、EB(约100万TB)或ZB(约10亿TB)。多样的数据类型指数据种类和来源多样化,包括结构化、半结构化和非结构化数据,具体表现为关系型数据、日志、音频、视频、文本、图片、地理位置信息等类型数据,多类型的数据对数据的处理能力提出了更高的要求。价值密度低指有价值数据所占比例低。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,通过结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代需要解决的重要问题之一。快速的数据流转指数据增长速度快,处理速度要求快,时效性要求高。例如实时监测场景中,企业需要对物联网设备数据进行实时处理并做出反应;零售电子商务应用类软件将消费者所持的移动设备的地理位置信息和其个人偏好相结合,推送有针对性的促销信息。这是大数据区别于传统数据使用的显著特征。随着信息技术以及实际业务需求的快速发展,传统数据管理软件在处理大数据场景时不能很好适应数据的4V特性,面临较多技术挑战。因此,传统数据管理软件迫切需要技术革新。(二)传统集中式软件栈向新兴分布式软件栈演进1970-2000年,数据管理软件主要为集中式架构的关系型数据库,其软件产品具备不可分割性(atomicity)、一致性(consistency)、隔离性(isolation,又称独立性)、持久性(durability)即ACID功能特性,占据了数据管理软件的主导地位。关系型数据库技术出现在20世纪70年代,经过二十余年的发展,到90年代已经成熟。市场上具有代表性的集中式架构关系型数据库产品包括Oracle、IBMDB2以及微软SQLServer等。2000年以来,随着互联网和计算机技术的快速发展,需要处理的数据量更大、类型更丰富、速度要求更快,传统集中式计算架构已无法适应数据海量、异构、多源等特点,在部署的扩展性、容错性、经济性、灵活性等方面有一定局限性。谷歌于2003年-2006年间的三篇论文奠定了分布式存储和计算的基础,而后行业从业者基于以上理论建立了Hadoop、Spark等大数据分布式系统框架,并交由Apache软件基金会托管;2009年,在JohanOskarsson开源分布式数据库的讨论中,来自Rackspace的EricEvans重提NoSQL概念,用以指代非关系型的分布式数据存储系统。针对于不同的场景,分别产生了图数据库、搜索引擎、文档数据库、键值数据库等NoSQL数据库,代表性NoSQL数据库提供商包括MongoDB、Elastic等。2010年以来,随着数字化转型的逐步深化,快速变化的业务场景呈现了复杂化、多样化的态势。复杂的业务场景往往需要使用多种数据模型,以及数据模型间的融合。这个时期的,行业内大部分数据库都是面向单一数据模型而设计的,用以解决特定业务场景的特定问题。例如,使用传统的关系型数据库解决结构化数据的存储和处理问题、使用图数据库解决图相关的存储和处理问题、使用文档数据库解决文本相关的存储和处理问题。由于结构化数据和非结构化数据通常以不同的格式和模式存储,单模型数据库虽然优化了数据存储和处理,却难以满足日趋增长的、多样的业务场景需求。当同一业务需要用到不同类型数据的时候,受限于单模型数据库的处理能力,客户往往需要部署多个相互独立的单模型数据库,在对不同模型数据进行联合处理的时候,需要对数据进行搬迁或融合,导致架构复杂度高、开发成本高、运维成本高以及数据处理效率低。由此,催生了从单一数据管理系统到融合型、多模型数据管理系统的技术需求。此外,随着云计算技术的大规模应用,传统各类软件产品都开始由独立部署模式向云服务模式转变。其中数据库作为信息系统核心软件,逐渐附加云化能力形成云原生数据库,以服务的形式对外提供技术支撑。云原生数据库按照部署方式可以分为公有云部署和私有云部署。其中,私有云部署模式由企业提供云数据库依赖的底层物理资源,数据库服务商负责部署云原生数据库软件,后期企业和数据库服务商约定运维维护工作的具体职责分工等,特点是自有资源池化,数据不外流等。相比公有云部署下的云数据库,私有云模式更加关注信息安全,能够实现对数据安全性和服务质量最有效控制,仅限于企业员工和取得授权的合作伙伴使用。多模型数据库云原生相关技术已经成为信息产业的未来发展方向,促使大数据软件进一步革新,规模呈现快速增长趋势,代表性企业如Snowflake、AWS等。相较于国内外的现状,私有云在面向国计民生的相关行业更受客户欢迎,面向私有云模式的云原生数据库预计在未来将获得快速增长。随着技术不断成熟,分布式架构将逐渐成为主流。自底向上,传统的集中式资源管理调度逐渐向基于云原生技术的分布式统一资源管理平台发展;数据管理软件技术架构也会因为计算模式的转变发生重大变革,传统的集中式数据库逐渐向分布式、多模型数据库发展;传统数据分析软件逐渐向新型的分布式数据开发和智能分析软件发展。(三)国产基础软件迎来爆发式增长阶段当前,中国大数据软件领域处于发展的历史机遇期,我国高度重视大数据在经济社会发展中的作用,十八届五中全会提出实施国家大数据战略,《促进大数据发展行动纲要》指出,建立安全可信的大数据技术体系是推进大数据产业基础研究和核心技术攻关的重要目标。十四五规划和2035年远景目标纲要提出,培育壮大人工智能、大数据等新兴数字产业,充分发挥海量数据和丰富应用场景优势,促进数字技术与实体经济深度融合,赋能传统行业转型升级,打造数字经济新优势。全球新一代信息产业处于加速变革期,大数据相关底层技术处于创新突破期,国内市场需求处于爆发期,为国内基础软件厂商带来明确的增长机遇。同时,随着国内基础软件人才的不断增加,在应对新一代场景,不断积累技术经验过程中,国内已形成具备自主研发实力且能与国外厂商竞争的基础软件厂商,并开始实现规模产业化落地。大数据全生命周期管理大数据生命周期进一步细分为大数据集成、存储和处理、治理、建模、挖掘和流通等阶段。(一)大数据集成大数据集成包括大数据采集和大数据整合。大数据采集主要是通过各种技术手段将分散的海量内容数据(文本、音频、视频等)、行为数据(访问、查询、搜索、会话、表单等)、工业生产数据(传感器数据、监控数据)等从业务系统中收集出来。由于大数据本身具有分散、海量、高速、异质的特征,采集难度较大,因此保证数据采集的稳定性、可靠性、高效性、可用性和可扩展性等是主要的技术目标,越来越多的企业开始选用专业的数据采集服务。大数据整合的目标是将各种分布的、异构的数据源中的数据抽取后,进行清洗、转换,最后加载到数据仓库或数据集市中,作为数据分析处理和挖掘的基础;这个过程常常也被称为ETL(Extract/抽取,Transform/转换,Load/加载),通常ETL占到整个数据仓库开发时间的60%~80%。大数据时代,数据整合软件的市场也开始了整体的技术升级,主要解决两个主要技术问题,一是独立的ETL应用服务器的计算能力普遍不足,二是无法处理半结构化和非结构化数据。经过几年的技术发展,ETL过程逐步演进为ELT,即数据抽取后直接加载(Load)到大数据平台中,再基于大数据平台的计算能力来实现数据转换(Transform),不再依赖ETL应用服务器做抽取和转化工作,这样可以解决ETL应用服务器的处理能力不足问题,充分利用大数据平台的分布式计算能力提升数据集成的效率和稳定性。(二)大数据存储和处理大数据存储与处理要用用服务器及相关设备把采集到的数据存储起来,使得数据能够被高效地访问和运算。由于数据量的爆发式增长,尤其是非结构化数据的大量涌现,传统的单机系统性能出现瓶颈,单纯地提高硬件配置已经难以跟上业务的需求,产生的海量数据没有合适的存储场所,企业被迫放弃大量有价值的数据;数据处理的速度和性能出现瓶颈,业务的深度和广度受到限制。因此,过去十年间,计算机系统逐步从集中式向分布式架构发展。分布式架构及相关技术通过增加服务器的数量来提升系统的处理能力,每个节点都是一个可独立运行的单元,单个节点失效时不会影响应用整体的可用性。分布式系统在扩展性、容错性、经济性、灵活性、可用性和可维护性方面具有明显优势。(三)数据治理根据国际数据管理协会的定义,数据治理是对数据资产管理形式权利和控制的活动集合。数据治理是一个管理体系,包括组织、制度、流程和工具,随着集成和存储的数据量增加,数据治理的难度也逐渐增加,牵扯的关联方也越来越多,因此需要一套适合企业的方法论来开展工作。业界逐渐形成了DAMA、DCMM等较完整的数据治理体系框架,一般包括制定数据治理战略、定义数据治理工作机制、通过各个业务专题来落实相关数据治理工作内容,并最终落实到数据治理工具上来实现高效持续的数据治理的执行流程。具体到数据治理的内容,一般包括元数据管理(包括元数据采集、血缘分析、影响分析等)、数据标准管理(包括标准定义、查询与发布等)、数据质量管理(包括质量规则定义、质量检查、质量报告等)、数据资产管理(包括数据资产编目、数据资产服务、资产审批等)、数据安全管理(包括数据权限管理、数据脱敏、数据加密等)、数据生命周期管理(包括数据归档、数据销毁等)以及主数据管理(包括主数据申请、发布、分发等)这几个主要的部分。(四)数据建模数据建模是构建企业数据仓库、数据湖和数据集市的重要过程,其通过一个业务级别的数据模型设计,将分散在不同数据源中的数据集成在一起,并通过一种面向业务主题的方式将数据分门别类来做重新组织和标准化,形成有明确业务意义的数据形式,统一为数据分析、数据挖掘等提供可用的数据。面向业务主题(如客户主题、账户主题等)的数据组织管理方式便于业务人员对数据的理解和综合使用。具体到技术层面,数据建模一般包括业务调研、架构设计、数据模型设计、数据库SQL开发与测试、业务集成上线等几个阶段,架构设计是整个工作的核心,一般会面向不同的行业来设计相关行业的逻辑数据模型。在数据建模过程中使用的工具主要包括:数据模型设计与管理工具、SQL开发工具、任务调度工具等。(五)数据分析和挖掘大数据分析和数据挖掘的核心目标是对客观事实规律进行描述、展示和总结、刻画、推广,可以从大量的数据中通过算法来揭示出隐含的、未知的并有潜在价值信息,并对客观规律进行溯源和解释,从而帮助决策者做出正确的预测和决策。围绕这个目标,大数据分析和挖掘的手段可以分为模型驱动、数据驱动等,一般通过统计、在线分析、情报检索、机器学习和专家系统等在内的多种方法来实现这一目标。现阶段在面对大数据4V问题时,大数据分析和数据挖掘工具对传统数据分析和挖掘工具做进一步自动化和智能化;与此同时,近年来深度学习的兴起又为大数据分析提供了新的手段,其做为当前计算机行业的热点研究方向之一,其本质的目标是从大量数据中提取模式和知识,其要处理的对象包括结构化数据、半结构化数据和非结构化数据在内的所有类型数据,例如近年来在视频、语音等非结构化数据的分析需求快速增加,相应的深度学习技术也取得了飞速发展。(六)数据流通数据流通是按照一定规则,将存储的数据或者数据分析、挖掘得到的信息作为流通对象,从供应方传递到需求方的过程。数据流通的具体内容包括可视化的分析报告、面向运营人员的数据标签、面向应用可以直接调用的数据指标API、面向数据分析人员的数据集、面向数据挖掘人员的数据特征、和面向业务建模人员的单方或多方的建模模型等。基于数据水印、数据加密和脱敏、隐私计算、联邦学习的数据流通安全技术,可以提高数据流通的完整性和保密性。全球大数据市场发展情况全球大数据市场规模由2015年231亿美元增长至2019年的496亿美元,年复合增长率约为21.1%,全球整体市场规模有望在2024年超过800亿美元,2019至2024年复合增长率约为11.8%。在2015年,大数据服务仍然是全球大数据市场最大的收入来源,约为91亿美元,而硬件和软件收入分别达到73亿美元和67亿美元。随着硬件成本的下降以及软件附加值的提升,预计未来全球大数据市场中硬件及服务收入贡献占比将逐渐减少,软件将超过服务和硬件,成为全球大数据市场最主要的收入来源。全球大数据软件市场规模由2015年的67亿美元增长至2019年的170亿美元,年复合增长率为26.2%,超过硬件和服务收入增速,并且预计软件市场规模将在2024年达到377亿美元,年复合增长率约为17.3%。在大数据软件中,随着大数据管理平台和数据应用中间件产品的成熟,未来将贡献更多的收入占比。关系营销的主要目标关系营销更为关注的是维系现有顾客,丧失老主顾无异于失去市场、失去利润的来源。关系营销的重要性就在于争取新顾客的成本大大高于保持老顾客的成本。有的企业推行“零顾客叛离”计划,目标是让顾客没有离去的机会。这就要求及时掌握顾客的信息,随时与顾客保持联系,并追踪顾客动态。因此,仅仅维持较高的顾客满意度和忠诚度还不够,必须分析顾客产生满意感和忠诚度的根本原因。由于对企业行为绩效的感知和理解不同,表示满意的顾客,原因可能不同,只有找出顾客满意的真实原因,才能有针对性地采取措施来维系顾客。满意的顾客会对产品、品牌乃至公司保持忠诚,忠诚的顾客会重复购买某一产品或服务,不为其他品牌所动摇,不仅会重复购买已买过的产品,而且会购买企业的其他产品。同时顾客的口头宣传,有助于树立企业的良好形象。此外,满意的顾客还会高度参与和介入企业的营销活动过程,为企业提供广泛的信息、意见和建议。整合营销传播计划过程在制定整合营销传播策略的过程中,营销企业需要结合各种促销组合要素,平衡每一个要素的优势和劣势以产生最有效的传播计划。可以说,整合营销传播管理实际上就是对目标受众进行有效传播的过程,包括策划、执行、评估和控制各种促销组合要素。整合营销传播方案的制定者必须决定促销组合中各要素的角色和功能,为每种要素制定正确的策略,确定它们如何进行整合,为实施进行策划,考虑如何评估所取得的成果,并进行必要的调整。营销传播只是整体营销计划和方案的一部分,必须能够融合于其中。整合营销和整合营销传播(一)整合营销的内涵整合营销强调以满足消费者需求为中心,以整合企业内外部所有资源为手段,把一切企业活动进行一元化整合重组,使企业在各个环节上达到高度协调一致,从而实现企业目标的一体化营销。整合既包括企业营销过程、营销方式以及营销管理等方面的整合,也包括对企业内外的商流、物流及信息流的整合。菲利普,科特勒认为:“当公司所有的部门都能为顾客利益服务时,其结果是整合营销。”“整合营销包含两方面的含义:首先,各种营销职能(推销人员、广告、产品管理、营销调研等)必须彼此协调……其次,营销必须使公司其他部门接受‘思考顾客’的观念。”他又说:“整合营销一般包括两大主题,分别是:①许多不同的营销活动都能够传播和交付价值;②在有效协调的情况下,实现各项营销活动的综合效果的最大化。”营销组合概念强调将市场营销中各种要素组合起来的重要性,营销整合则与之一脉相承,但更为强调各种要素之间的关联性,要求它们成为统一的有机体。在此基础上,整合营销以企业由内向外的战略为基础,以整合企业各种资源为手段,以消费者为重心,要求各种营销要素的作用力统一方向,形成合力,共同为企业的营销目标服务。(二)整合营销传播的含义整合营销传播(IMC),也称整合营销沟通。美国市场营销协会将整合营销传播定义为,“是一种用来确保产品、服务、组织的顾客或潜在顾客所接收的所有品牌接触都与此人相关,并且随着时间的推移保持一致的计划过程”。被誉为“整合营销传播之父”的唐•E.舒尔茨教授认为,IMC不是以一种表情、一种声音,而是更多的要素构成的概念性。IMC是以潜在顾客和现在顾客为对象,开发并实行说服性传播的多种形态的过程。整合营销传播是在一体化营销的基础上导入了传播概念,但IMC对营销影响很大,人们不得不认真考虑怎样才能使企业与利益关系者间的有效沟通成为可能。市场细分战略的产生与发展市场细分是1956年由美国营销学者温德尔,斯密于《产品差异和市场细分——可供选择的两种市场营销战略》一文中,在总结西方企业营销实践经验的基础上提出的。市场细分不单纯是一个抽象理论,而且具有很强的实践性,顺应了第二次世界大战以后美国众多产品市场转化为买方市场这一新的形势,是现代企业营销观念的一大进步。从总体上看,不同的市场条件和环境,从根本上决定企业的营销战略。市场细分理论和实践的发展经历了以下几个阶段。(一)大量营销阶段早在19世纪末20世纪初,即资本主义工业革命阶段,整个社会经济发展的中心和特点是强调速度和规模,市场以卖方为主导。在卖方市场条件下,企业市场营销的基本方式是大量营销,即大批量生产品种、规格单一的产品,并且通过广泛、普遍的分销渠道销售产品。在这样的市场环境下,大量营销的方式降低了产品的成本和价格,获得了较丰厚的利润。企业没有必要研究市场需求,市场细分战略也不可能产生。(二)产品差异化营销阶段20世纪30年代,发生了震撼世界的资本主义经济危机,西方企业面临产品严重过剩,市场迫使企业转变经营观念。营销方式从大量营销向产品差异化营销转变,即向市场推出许多与竞争者在质量、外观、性能和品种等方面不同的产品。产品差异化营销较大量营销是一种进步,但是由于企业仅仅考虑自己现有的设计、技术能力,忽视对顾客需求的研究,缺乏明确的目标市场,因此产品营销的成功率依然很低。由此可见,在产品差异化营销阶段,企业仍然没有重视对市场需求的研究,市场细分仍然缺乏产生的基础和条件。(三)目标营销阶段20世纪50年代以后,在科学技术革命的推动下,生产力水平大幅度提高,产品日新月异,生产与消费的矛盾日益尖锐,以产品差异化为中心的推销体制远远不能解决西方企业所面临的市场问题。于是,市场迫使企业再次转变经营观念和经营方式,由产品差异化营销转向以市场需求为导向的目标营销,即企业在研究市场和细分市场的基础上,结合自身的资源与优势,选择其中最有吸引力和最能有效为之提供产品和服务的细分市场作为目标市场,设计与目标市场需求特点相互匹配的营销组合。市场细分战略应运而生。市场细分理论的产生,使传统营销观念发生根本性的变革,在理论和实践中都产生了极大影响,被西方理论家称之为“市场营销革命”。市场细分理论产生后经历了不断完善的过程。最初,随着“以消费者为中心”的营销理念日渐深入人心以及个性化消费时代的到来,企业把市场不断细分,从而出现超市场细分理论(即一对一营销理论)。人们认为把市场划分得越细越能适应顾客需求,只要通过增强企业产品的竞争力便可提高利润率。但是20世纪70年代以来,能源危机和整个资本主义市场不景气,使不同阶层消费者的可支配收入出现不同程度的下降,人们在购买时更多地注重价值、价格和效用的比较。过度细分市场导致企业营销成本上升而减少总收益,于是反市场细分理论应运而生。营销学者和企业家认为,应该从成本和收益的比较出发对市场进行适度的细分,这是对过度细分的反思和矫正。它赋予了市场细分理论新的内涵,使其不断地发展和完善,对指导企业市场营销活动具有更强的可操作性。20世纪90年代,在全球营销环境下,适度细分理论又被赋予了更新的内涵,适应了全球营销趋势的发展。全球营销力图尽可能地识别和满足世界各国消费者的共同需求,并希望以此获得更广阔的市场和更低的成本。而且,全球营销对于“需求”的理解更为深刻,它不是简单、一味地识别和满足消费者的现有需求,而是更为关注挖掘潜在需求,或在异国市场上引入并推行新的消费文化。与此同时,全球营销同样注意到各个国家和地区消费者需求之间的差异。因为分布于世界200多个国家和地区的全球消费者,拥有不同的语言和肤色,不同的风俗习惯,不同的宗教信仰,不同的行为方式。事实上,没有一家企业已经或者试图把触角伸向世界的每一个角落。它们都根据自身的优势和劣势,寻求全球市场上的机会,选择那些能够比对手更好地提供产品或服务的细分市场作为目标市场,并与之建立互惠互利的交换关系,在满足其需求的同时求得自身发展壮大。品牌经理制与品牌管理品牌是企业重要的无形资产,品牌管理实质就是品牌资产管理。品牌管理水平的高低直接关系到品牌资产投资和利用效果的好坏。一般而言,企业的品牌管理的主要任务包括监控品牌运营状况,设计或参与设计品牌,申请注册商标,管理品牌或商标档案,管理商标标签的印制、领用与销毁,处理品牌纠纷、维护商标权,协助打假,品牌全员管理教育等。品牌管理的组织形式反映了在品牌运营活动中企业内部各部门、各机构的权力与责任及其相互关系,主要有职能管理制和品牌经理制两种。(一)职能管理制职能管理制是在西方盛行于20世纪20—50年代的品牌管理制度(当然,许多企业至今仍很钟爱)。作为品牌管理制度,其主要做法是,在企业统一领导、组织与协调下,品牌管理的职责主要由企业各职能部门分别承担,各职能部门在各自的权责范围内行使权利、承担义务。亦即,在职能管理制度下,有关品牌的决策与计划都由各职能管理部门的负责人或主管人员共同参与、研究制定、分别执行。(二)品牌经理制品牌经
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- STEAM教育下的跨学科教学法探索
- Triz物场分析与商业空间设计的创新实践
- 《Units 1-4 Review 1》(教学实录)-2024-2025学年陕旅版(三起)(2024)英语三年级上册
- 政治学概论名词解释
- 企业职工高效学习掌握个人效率的提升法
- 环保应急预案(6篇)
- 教科版二年级上册科学期末测试卷【夺分金卷】
- 中国宏观经济形势分析与展望
- 传统文化与儿童礼仪教育的融合
- 企业客服团队能力建设与质量管理探索
- 《法理学》(第三版教材)形成性考核作业1234答案
- 植物的抗热性
- 《人际关系与沟通技巧》(第3版)-教学大纲
- 2023年中医养生之药膳食疗考试试题
- 某土石方施工工程主要施工机械设备表
- 硅PU(塑料面层)检验批质量验收记录表
- 高空除锈刷漆施工方案模板
- 信访面试资料
- 【课件】《“敬畏生命珍爱生命”》主题班会课件
- 住宅物业危险源辨识评价表
- 《报告文学研究》(07562)自考考试复习题库(含答案)
评论
0/150
提交评论